A007978 Least non-divisor of n.
2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 4, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Bakir Farhi, On the average asymptotic behavior of a certain type of sequences of integers, Integers, Vol. 9 (2009), pp. 555-567.
Crossrefs
Programs
-
Haskell
import Data.List ((\\)) a007978 = head . ([1..] \\) . a027750_row -- Reinhard Zumkeller, May 10 2014
-
Maple
a:= proc(n) local k; for k from 2 while n mod k = 0 do od: k end proc: seq(a(n),n=1..100); # Robert Israel, Sep 02 2014
-
Mathematica
Table[k := 1; While[Mod[n, k] == 0, k++]; k, {n, 2000}] (* Clark Kimberling, Jun 16 2012 *) Join[{2, 3}, Table[Complement[Range[n], Divisors[n]][[1]], {n, 3, 100}]] (* Alonso del Arte, Sep 23 2017 *)
-
PARI
a(n) = {my(k=2); while(!(n % k), k++); k;} \\ Michel Marcus, Sep 25 2017
-
Python
def a(n): k = 2 while not n%k: k += 1 return k print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Jul 09 2022
-
Python
def A007978(n): return next(filter(lambda d:n%d,range(2,n))) if n>2 else n+1 # Chai Wah Wu, Feb 22 2023
Formula
G.f.: sum(k >= 2, -k*(x^A003418(k) - x^A003418(k-1))/((x^A003418(k) - 1)*(x^A003418(k-1) - 1))). - Robert Israel, Sep 02 2014
From Alonso del Arte, Sep 23 2017: (Start)
a(n) < n for all n > 2.
a(2n + 1) = 2, a(2n) >= 3.
a(2^k) = 3 for k > 0.
a(n!) = prime(pi(n) + 1) for n >= 0, except for a(3!) = 4. (End)
Asymptotic mean: lim_{n->oo} Sum_{k=1..n} a(k) = 1 + A064859 (Farhi, 2009). - Amiram Eldar, Jun 29 2021
Comments