cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A007996 Primes that divide at least one term of Sylvester's sequence s = A000058: s(n+1) = s(n)^2 - s(n) + 1, s(0) = 2.

Original entry on oeis.org

2, 3, 7, 13, 43, 73, 139, 181, 547, 607, 1033, 1171, 1459, 1861, 1987, 2029, 2287, 2437, 4219, 4519, 6469, 7603, 8221, 9829, 12763, 13147, 13291, 13999, 15373, 17881, 17977, 19597, 20161, 20479, 20641, 20857, 20929, 21661, 23689, 23773, 27031
Offset: 1

Views

Author

Bennett Battaile (bennett.battaile(AT)autodesk.com)

Keywords

Comments

Or, let S_1 = [2] and let S_{n+1} = list formed by sorting the union of S_n together with all prime factors of 1 + Product_i S_n(i) into increasing order; sequence is limit as n -> infinity of S_n.
Prime divisors of the terms of Sylvester's sequence A000058. - Max Alekseyev, Jan 03 2004. Also of A007018. - N. J. A. Sloane, Jan 27 2007
Because all terms of the sequence s(n) are coprime, a prime can divide at most one term. Odoni shows that primes p > 3 in this sequence must satisfy p = 1 (mod 6). - T. D. Noe, Sep 25 2010
See A180871(n) for the index of the first term of A000058 (this is one less than the index of the s-sequence) divisible by a(n). - M. F. Hasler, Apr 24 2014

Crossrefs

The missing primes form A096264.
Cf. A180871 (k such that a(n) divides A000058(k)).
Cf. A323605 (smallest prime dividing A000058(n)).

Programs

  • Maple
    n := 1; for p do if isprime(p) then x := 2 mod p; S := {}; while not member(x,S) do if x=0 then a[n] := p; n := n+1; break; fi; S := S union {x}; x := (x^2-x+1) mod p; od; fi; od;
  • Mathematica
    t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2,p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet,s], AppendTo[modSet,s]; k++; s=Mod[s^2-s+1,p]]; If[s==0, AppendTo[t,{p,k}]]]; Transpose[t][[1]] (* T. D. Noe, Sep 25 2010 *)
  • PARI
    is(n)=my(k=Mod(2,n)); for(i=1, n, k=(k-1)*k+1; if(k==0, return(isprime(n)))); n==2 \\ Charles R Greathouse IV, Sep 30 2015

Extensions

More terms from Max Alekseyev, Jan 03 2004
Entry revised by N. J. A. Sloane, Jan 28 2007
Definition corrected (following a remark by Don Reble) by M. F. Hasler, Apr 24 2014