A007996 Primes that divide at least one term of Sylvester's sequence s = A000058: s(n+1) = s(n)^2 - s(n) + 1, s(0) = 2.
2, 3, 7, 13, 43, 73, 139, 181, 547, 607, 1033, 1171, 1459, 1861, 1987, 2029, 2287, 2437, 4219, 4519, 6469, 7603, 8221, 9829, 12763, 13147, 13291, 13999, 15373, 17881, 17977, 19597, 20161, 20479, 20641, 20857, 20929, 21661, 23689, 23773, 27031
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..12046 (first 8181 terms are also given at the Andersen link)
- J. K. Andersen, Factorization of Sylvester's sequence
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012
- R. W. K. Odoni, On the prime divisors of the sequence w_{n+1} = 1+w_1 ... w_n, J. London Math. Soc. 32 (1985), 1-11.
- Filip Saidak, A New Proof of Euclid's Theorem, Amer. Math. Monthly, Dec 2006
- Eric Weisstein's World of Mathematics, Sylvester's sequence
Crossrefs
Programs
-
Maple
n := 1; for p do if isprime(p) then x := 2 mod p; S := {}; while not member(x,S) do if x=0 then a[n] := p; n := n+1; break; fi; S := S union {x}; x := (x^2-x+1) mod p; od; fi; od;
-
Mathematica
t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2,p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet,s], AppendTo[modSet,s]; k++; s=Mod[s^2-s+1,p]]; If[s==0, AppendTo[t,{p,k}]]]; Transpose[t][[1]] (* T. D. Noe, Sep 25 2010 *)
-
PARI
is(n)=my(k=Mod(2,n)); for(i=1, n, k=(k-1)*k+1; if(k==0, return(isprime(n)))); n==2 \\ Charles R Greathouse IV, Sep 30 2015
Extensions
More terms from Max Alekseyev, Jan 03 2004
Entry revised by N. J. A. Sloane, Jan 28 2007
Definition corrected (following a remark by Don Reble) by M. F. Hasler, Apr 24 2014
Comments