cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A180871 Index of term in Sylvester's sequence A000058 divisible by prime A007996(n).

Original entry on oeis.org

0, 1, 2, 4, 3, 11, 4, 9, 6, 6, 6, 29, 64, 42, 9, 59, 10, 80, 39, 103, 140, 41, 137, 53, 69, 146, 104, 14, 92, 15, 117, 199, 75, 98, 316, 233, 28, 92, 281, 44, 136, 26, 258, 7, 38, 6, 176, 126, 74, 59, 89, 61, 45, 79, 13, 448, 119, 180, 290, 184, 348, 502, 508, 161, 7, 265, 229
Offset: 1

Views

Author

T. D. Noe, Sep 25 2010

Keywords

Comments

Because all terms of Sylvester's sequence are coprime to each other, each prime in A007996 divides only one term of A000058. The Mathematica program computes both the primes in A007996 and the terms in this sequence. Using modular arithmetic, it is easy to see that if prime p divides A000058(k) for some k, then we must have k < p. In practice, k < 5*sqrt(p).
An open problem is to prove that all terms of Sylvester's sequence are squarefree or to find a counterexample. Using the p from A007996 and k found here, it is simple to determine whether A000058(k) = 0 (mod p^2). No p < 10^10 was found to have this property.

Examples

			A000058(4) = 1807 = 43 * 181 = A007996(4) * A007996(7), so a(4) = a(7) = 4. - _Jonathan Sondow_, Jan 26 2014
		

Crossrefs

Programs

  • Mathematica
    t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2,p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet,s], AppendTo[modSet,s]; k++; s=Mod[s^2-s+1,p]]; If[s==0, AppendTo[t,{p,k}]]]; Transpose[t][[2]]

Formula

A000058(a(n)) == 0 (mod A007996(n)) implies a(n) < A007996(n). - Jonathan Sondow, Jan 26 2014

Extensions

Definition clarified by Jonathan Sondow, Jan 26 2014

A096263 Duplicate of A007996.

Original entry on oeis.org

2, 3, 7, 13, 43, 73, 139, 181, 547, 607, 1033, 1171, 1459, 1861, 1987, 2029, 2287
Offset: 1

Views

Author

Keywords

A000058 Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(0) = 2.

Original entry on oeis.org

2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443, 12864938683278671740537145998360961546653259485195807
Offset: 0

Views

Author

Keywords

Comments

Also called Euclid numbers, because a(n) = a(0)*a(1)*...*a(n-1) + 1 for n>0, with a(0)=2. - Jonathan Sondow, Jan 26 2014
Another version of this sequence is given by A129871, which starts with 1, 2, 3, 7, 43, 1807, ... .
The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + ... .
Take a square. Divide it into 2 equal rectangles by drawing a horizontal line. Divide the upper rectangle into 2 squares. Now you can divide the lower one into another 2 squares, but instead of doing so draw a horizontal line below the first one so you obtain a (2+1 = 3) X 1 rectangle which can be divided in 3 squares. Now you have a 6 X 1 rectangle at the bottom. Instead of dividing it into 6 squares, draw another horizontal line so you obtain a (6+1 = 7) X 1 rectangle and a 42 X 1 rectangle left, etc. - Néstor Romeral Andrés, Oct 29 2001
More generally one may define f(1) = x_1, f(2) = x_2, ..., f(k) = x_k, f(n) = f(1)*...*f(n-1)+1 for n > k and natural numbers x_i (i = 1, ..., k) which satisfy gcd(x_i, x_j) = 1 for i <> j. By definition of the sequence we have that for each pair of numbers x, y from the sequence gcd(x, y) = 1. An interesting property of a(n) is that for n >= 2, 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) = (a(n)-2)/(a(n)-1). Thus we can also write a(n) = (1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 2 )/( 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n-1) - 1). - Frederick Magata (frederick.magata(AT)uni-muenster.de), May 10 2001; [corrected by Michel Marcus, Mar 27 2019]
A greedy sequence: a(n+1) is the smallest integer > a(n) such that 1/a(0) + 1/a(1) + 1/a(2) + ... + 1/a(n+1) doesn't exceed 1. The sequence gives infinitely many ways of writing 1 as the sum of Egyptian fractions: Cut the sequence anywhere and decrement the last element. 1 = 1/2 + 1/3 + 1/6 = 1/2 + 1/3 + 1/7 + 1/42 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1806 = ... . - Ulrich Schimke, Nov 17 2002; [corrected by Michel Marcus, Mar 27 2019]
Consider the mapping f(a/b) = (a^3 + b)/(a + b^3). Starting with a = 1, b = 2 and carrying out this mapping repeatedly on each new (reduced) rational number gives 1/2, 1/3, 4/28 = 1/7, 8/344 = 1/43, ..., i.e., 1/2, 1/3, 1/7, 1/43, 1/1807, ... . Sequence contains the denominators. Also the sum of the series converges to 1. - Amarnath Murthy, Mar 22 2003
a(1) = 2, then the smallest number == 1 (mod all previous terms). a(2n+6) == 443 (mod 1000) and a(2n+7) == 807 (mod 1000). - Amarnath Murthy, Sep 24 2003
An infinite coprime sequence defined by recursion.
Apart from the initial 2, a subsequence of A002061. It follows that no term is a square.
It appears that a(k)^2 + 1 divides a(k+1)^2 + 1. - David W. Wilson, May 30 2004. This is true since a(k+1)^2 + 1 = (a(k)^2 - a(k) + 1)^2 +1 = (a(k)^2-2*a(k)+2)*(a(k)^2 + 1) (a(k+1)=a(k)^2-a(k)+1 by definition). - Pab Ter (pabrlos(AT)yahoo.com), May 31 2004
In general, for any m > 0 coprime to a(0), the sequence a(n+1) = a(n)^2 - m*a(n) + m is infinite coprime (Mohanty). This sequence has (m,a(0))=(1,2); (2,3) is A000215; (1,4) is A082732; (3,4) is A000289; (4,5) is A000324.
Any prime factor of a(n) has -3 as its quadratic residue (Granville, exercise 1.2.3c in Pollack).
Note that values need not be prime, the first composites being 1807 = 13 * 139 and 10650056950807 = 547 * 19569939581. - Jonathan Vos Post, Aug 03 2008
If one takes any subset of the sequence comprising the reciprocals of the first n terms, with the condition that the first term is negated, then this subset has the property that the sum of its elements equals the product of its elements. Thus -1/2 = -1/2, -1/2 + 1/3 = -1/2 * 1/3, -1/2 + 1/3 + 1/7 = -1/2 * 1/3 * 1/7, -1/2 + 1/3 + 1/7 + 1/43 = -1/2 * 1/3 * 1/7 * 1/43, and so on. - Nick McClendon, May 14 2009
(a(n) + a(n+1)) divides a(n)*a(n+1)-1 because a(n)*a(n+1) - 1 = a(n)*(a(n)^2 - a(n) + 1) - 1 = a(n)^3 - a(n)^2 + a(n) - 1 = (a(n)^2 + 1)*(a(n) - 1) = (a(n) + a(n)^2 - a(n) + 1)*(a(n) - 1) = (a(n) + a(n+1))*(a(n) - 1). - Mohamed Bouhamida, Aug 29 2009
This sequence is also related to the short side (or hypotenuse) of adjacent right triangles, (3, 4, 5), (5, 12, 13), (13, 84, 85), ... by A053630(n) = 2*a(n) - 1. - Yuksel Yildirim, Jan 01 2013, edited by M. F. Hasler, May 19 2017
For n >= 4, a(n) mod 3000 alternates between 1807 and 2443. - Robert Israel, Jan 18 2015
The set of prime factors of a(n)'s is thin in the set of primes. Indeed, Odoni showed that the number of primes below x dividing some a(n) is O(x/(log x log log log x)). - Tomohiro Yamada, Jun 25 2018
Sylvester numbers when reduced modulo 864 form the 24-term arithmetic progression 7, 43, 79, 115, 151, 187, 223, 259, 295, 331, ..., 763, 799, 835 which repeats itself until infinity. This was first noticed in March 2018 and follows from the work of Sondow and MacMillan (2017) regarding primary pseudoperfect numbers which similarly form an arithmetic progression when reduced modulo 288. Giuga numbers also form a sequence resembling an arithmetic progression when reduced modulo 288. - Mehran Derakhshandeh, Apr 26 2019
Named after the English mathematician James Joseph Sylvester (1814-1897). - Amiram Eldar, Mar 09 2024
Guy askes if it is an irrationality sequence (see Guy, 1981). - Stefano Spezia, Oct 13 2024

Examples

			a(0)=2, a(1) = 2+1 = 3, a(2) = 2*3 + 1 = 7, a(3) = 2*3*7 + 1 = 43.
		

References

  • Graham Everest, Alf van der Poorten, Igor Shparlinski and Thomas Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
  • Richard K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • Richard K. Guy and Richard Nowakowski, Discovering primes with Euclid. Delta, Vol. 5 (1975), pp. 49-63.
  • Amarnath Murthy, Smarandache Reciprocal partition of unity sets and sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
  • Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005267, A000945, A000946, A005265, A005266, A075442, A007018, A014117, A054377, A002061, A118227, A126263, A007996 (primes dividing some term), A323605 (smallest prime divisors), A091335 (number of prime divisors), A129871 (a variant starting with 1).

Programs

  • Haskell
    a000058 0 = 2
    a000058 n = a000058 m ^ 2 - a000058 m + 1 where m = n - 1
    -- James Spahlinger, Oct 09 2012
    
  • Haskell
    a000058_list = iterate a002061 2  -- Reinhard Zumkeller, Dec 18 2013
    
  • Julia
    a(n) = n == 0 ? BigInt(2) : a(n - 1)*(a(n - 1) - 1) + 1
    [a(n) for n in 0:8] |> println # Peter Luschny, Dec 15 2020
  • Maple
    A[0]:= 2:
    for n from 1 to 12 do
    A[n]:= A[n-1]^2 - A[n-1]+1
    od:
    seq(A[i],i=0..12); # Robert Israel, Jan 18 2015
  • Mathematica
    a[0] = 2; a[n_] := a[n - 1]^2 - a[n - 1] + 1; Table[ a[ n ], {n, 0, 9} ]
    NestList[#^2-#+1&,2,10] (* Harvey P. Dale, May 05 2013 *)
    RecurrenceTable[{a[n + 1] == a[n]^2 - a[n] + 1, a[0] == 2}, a, {n, 0, 10}] (* Emanuele Munarini, Mar 30 2017 *)
  • Maxima
    a(n) := if n = 0 then 2 else a(n-1)^2-a(n-1)+1 $
    makelist(a(n),n,0,8); /* Emanuele Munarini, Mar 23 2017 */
    
  • PARI
    a(n)=if(n<1,2*(n>=0),1+a(n-1)*(a(n-1)-1))
    
  • PARI
    A000058(n,p=2)={for(k=1,n,p=(p-1)*p+1);p} \\ give Mod(2,m) as 2nd arg to calculate a(n) mod m. - M. F. Hasler, Apr 25 2014
    
  • PARI
    a=vector(20); a[1]=3; for(n=2, #a, a[n]=a[n-1]^2-a[n-1]+1); concat(2, a) \\ Altug Alkan, Apr 04 2018
    
  • Python
    A000058 = [2]
    for n in range(1, 10):
        A000058.append(A000058[n-1]*(A000058[n-1]-1)+1)
    # Chai Wah Wu, Aug 20 2014
    

Formula

a(n) = 1 + a(0)*a(1)*...*a(n-1).
a(n) = a(n-1)*(a(n-1)-1) + 1; Sum_{i>=0} 1/a(i) = 1. - Néstor Romeral Andrés, Oct 29 2001
Vardi showed that a(n) = floor(c^(2^(n+1)) + 1/2) where c = A076393 = 1.2640847353053011130795995... - Benoit Cloitre, Nov 06 2002 (But see the Aho-Sloane paper!)
a(n) = A007018(n+1)+1 = A007018(n+1)/A007018(n) [A007018 is a(n) = a(n-1)^2 + a(n-1), a(0)=1]. - Gerald McGarvey, Oct 11 2004
a(n) = sqrt(A174864(n+1)/A174864(n)). - Giovanni Teofilatto, Apr 02 2010
a(n) = A014117(n+1)+1 for n = 0,1,2,3,4; a(n) = A054377(n)+1 for n = 1,2,3,4. - Jonathan Sondow, Dec 07 2013
a(n) = f(1/(1-(1/a(0) + 1/a(1) + ... + 1/a(n-1)))) where f(x) is the smallest integer > x (see greedy algorithm above). - Robert FERREOL, Feb 22 2019
From Amiram Eldar, Oct 29 2020: (Start)
Sum_{n>=0} (-1)^n/(a(n)-1) = A118227.
Sum_{n>=0} (-1)^n/a(n) = 2 * A118227 - 1. (End)

A007018 a(n) = a(n-1)^2 + a(n-1), a(0)=1.

Original entry on oeis.org

1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, 12864938683278671740537145998360961546653259485195806
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees having nodes of outdegree 0,1,2 and such that all leaves are at level n. Example: a(2)=6 because, denoting by I a path of length 2 and by Y a Y-shaped tree with 3 edges, we have I, Y, I*I, I*Y, Y*I, Y*Y, where * denotes identification of the roots. - Emeric Deutsch, Oct 31 2002
Equivalently, the number of acyclic digraphs (dags) that unravel to a perfect binary tree of height n. - Nachum Dershowitz, Jul 03 2022
a(n) has at least n different prime factors. [Saidak]
Subsequence of squarefree numbers (A005117). - Reinhard Zumkeller, Nov 15 2004 [This has been questioned, see MathOverflow link. - Charles R Greathouse IV, Mar 30 2015]
For prime factors see A007996.
Curtiss shows that if the reciprocal sum of the multiset S = {x_1, x_2, ..., x_n} is 1, then max(S) <= a(n). - Charles R Greathouse IV, Feb 28 2007
The number of reduced ZBDDs for Boolean functions of n variables in which there is no zero sink. (ZBDDs are "zero-suppressed binary decision diagrams.") For example, a(2)=6 because of the 2-variable functions whose truth tables are 1000, 1010, 1011, 1100, 1110, 1111. - Don Knuth, Jun 04 2007
Using the methods of Aho and Sloane, Fibonacci Quarterly 11 (1973), 429-437, it is easy to show that a(n) is the integer just a tiny bit below the real number theta^{2^n}-1/2, where theta =~ 1.597910218 is the exponential of the rapidly convergent series Sum_{n>=0} log(1+1/a_n)/2^{n+1}. For example, theta^32 - 1/2 =~ 3263442.0000000383. - Don Knuth, Jun 04 2007 [Corrected by Darryl K. Nester, Jun 19 2017]
The next term has 209 digits. - Harvey P. Dale, Sep 07 2011
Urquhart shows that a(n) is the minimum size of a tableau refutation of the clauses of the complete binary tree of depth n, see pp. 432-434. - Charles R Greathouse IV, Jan 04 2013
For any positive a(0), the sequence a(n) = a(n-1) * (a(n-1) + 1) gives a constructive proof that there exists integers with at least n distinct prime factors, e.g. a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - Daniel Forgues, Mar 03 2017
Lower bound for A100016 (with equality for the first 5 terms), where a(n)+1 is replaced by nextprime(a(n)). - M. F. Hasler, May 20 2019

References

  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 94.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Lower bound for A100016.
Row sums of A122888.

Programs

  • Haskell
    a007018 n = a007018_list !! n
    a007018_list = iterate a002378 1  -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [n eq 1 select 1 else Self(n-1)^2 + Self(n-1): n in [1..10]]; // Vincenzo Librandi, May 19 2015
    
  • Maple
    A007018 := proc(n)
        option remember;
        local aprev;
        if n = 0 then
            1;
        else
            aprev := procname(n-1) ;
            aprev*(aprev+1) ;
        end if;
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    FoldList[#^2 + #1 &, 1, Range@ 8] (* Robert G. Wilson v, Jun 16 2011 *)
    NestList[#^2 + #&, 1, 10] (* Harvey P. Dale, Sep 07 2011 *)
  • Maxima
    a[1]:1$
    a[n]:=(a[n-1] + (a[n-1]^2))$
    A007018(n):=a[n]$
    makelist(A007018(n),n,1,10); /* Martin Ettl, Nov 08 2012 */
    
  • PARI
    a(n)=if(n>0,my(x=a(n-1));x^2+x,1) \\ Edited by M. F. Hasler, May 20 2019 and Jason Yuen, Mar 01 2025
    
  • Python
    from itertools import islice
    def A007018_gen(): # generator of terms
        a = 1
        while True:
            yield a
            a *= a+1
    A007018_list = list(islice(A007018_gen(),9)) # Chai Wah Wu, Mar 19 2024

Formula

a(n) = A000058(n)-1 = A000058(n-1)^2 - A000058(n-1) = 1/(1-Sum_{jA000058(j)) where A000058 is Sylvester's sequence. - Henry Bottomley, Jul 23 2001
a(n) = floor(c^(2^n)) where c = A077125 = 1.597910218031873178338070118157... - Benoit Cloitre, Nov 06 2002
a(1)=1, a(n) = Product_{k=1..n-1} (a(k)+1). - Benoit Cloitre, Sep 13 2003
a(n) = A139145(2^(n+1) - 1). - Reinhard Zumkeller, Apr 10 2008
If an (additional) initial 1 is inserted, a(n) = Sum_{kFranklin T. Adams-Watters, Jun 11 2009
a(n+1) = a(n)-th oblong (or promic, pronic, or heteromecic) numbers (A002378). a(n+1) = A002378(a(n)) = A002378(a(n-1)) * (A002378(a(n-1)) + 1). - Jaroslav Krizek, Sep 13 2009
a(n) = A053631(n)/2. - Martin Ettl, Nov 08 2012
Sum_{n>=0} (-1)^n/a(n) = A118227. - Amiram Eldar, Oct 29 2020
Sum_{n>=0} 1/a(n) = A371321. - Amiram Eldar, Mar 19 2024

A126263 List of primes generated by factoring successive integers in Sylvester's sequence (A000058).

Original entry on oeis.org

2, 3, 7, 43, 13, 139, 3263443, 547, 607, 1033, 31051, 29881, 67003, 9119521, 6212157481, 5295435634831, 31401519357481261, 77366930214021991992277, 181, 1987, 112374829138729, 114152531605972711, 35874380272246624152764569191134894955972560447869169859142453622851
Offset: 1

Views

Author

Howard L. Warth (hlw6c2(AT)umr.edu), Dec 22 2006

Keywords

Comments

The list is infinite and no term repeats since Sylvester's sequence is an infinite coprime sequence.
However, it appears to be unknown whether all terms in A000058 are squarefree. - Jeppe Stig Nielsen, Apr 23 2020

Examples

			2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443,
10650056950807 = 547 * 607 * 1033 * 31051,
113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481,
12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277.
165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014
		

References

  • Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.

Crossrefs

Programs

  • Maple
    a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;
  • Mathematica
    Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* Paolo Xausa, Sep 09 2024 *)
  • PARI
    v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ Charles R Greathouse IV, Oct 02 2014
  • Sage
    v = [2]
    for n in range(12):
        v.append(v[-1]^2-v[-1]+1)
        print(prime_divisors(v[-1])) # William Stein, Aug 26 2009
    

Extensions

Offset corrected by N. J. A. Sloane, Aug 20 2009
a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009
a(17) corrected by D. S. McNeil, Dec 10 2010
b-file updated at the suggestion of Hans Havermann by Ray Chandler, Feb 27 2015

A362250 Primes dividing terms of A231831.

Original entry on oeis.org

3, 5, 7, 11, 19, 23, 89, 101, 137, 157, 211, 373, 659, 877, 881, 1399, 1597, 1627, 1663, 1811, 2029, 2069, 2087, 2153, 2381, 2677, 2939, 3433, 3491, 3511, 3617, 3673, 4111, 4127, 4547, 4721, 5059, 5483, 6529, 6793, 6827, 7757, 8209, 8297, 8677, 9203, 9463, 9811, 10139, 10159, 11321
Offset: 1

Views

Author

Max Alekseyev, Apr 13 2023

Keywords

Comments

Since the terms of A231831 are pairwise coprime, each prime divides at most one term of A231831. Indices of the corresponding terms are listed in A362251, and so a(n) divides A231831(A362251(n)).

Crossrefs

A362251 a(n) is the unique index such that prime A362250(n) divides A231831(a(n)).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 9, 4, 4, 8, 3, 31, 12, 7, 7, 9, 44, 8, 22, 29, 36, 37, 8, 21, 5, 26, 4, 20, 24, 12, 76, 30, 5, 47, 5, 13, 9, 25, 6, 41, 51, 9, 53, 6, 27, 39, 5, 12, 78, 64, 10, 185, 113, 205, 91, 85, 43, 195, 32, 117, 20, 133, 142, 119, 64, 70, 199, 41, 125, 79, 243, 70, 35, 105, 67, 156
Offset: 1

Views

Author

Max Alekseyev, Apr 13 2023

Keywords

Crossrefs

A362252 Primes dividing terms of A231830.

Original entry on oeis.org

5, 53, 89, 101, 373, 877, 1109, 1181, 1597, 1613, 2029, 2069, 2153, 2213, 2381, 2741, 3617, 4273, 6529, 6737, 7417, 7717, 11321, 12653, 13009, 13309, 16829, 17729, 23581, 23993, 25373, 32569, 33353, 33857, 34841, 35053, 36097, 37201, 38609, 41513, 42461, 48661, 55829, 58369, 59093, 63281
Offset: 1

Views

Author

Max Alekseyev, Apr 21 2023

Keywords

Comments

Since the terms of A231830 are pairwise coprime, each prime divides at most one term of A231830. Indices of the corresponding terms are listed in A362253, and so a(n) divides A231830(A362253(n)).

Crossrefs

A362253 a(n) is the unique index such that prime A362252(n) divides A231830(a(n)).

Original entry on oeis.org

1, 4, 7, 2, 19, 25, 30, 38, 45, 4, 26, 33, 27, 46, 10, 59, 102, 38, 84, 37, 22, 77, 80, 37, 240, 57, 45, 240, 173, 38, 41, 100, 88, 44, 114, 39, 63, 24, 14, 121, 177, 12, 155, 270, 65, 109, 44, 391, 54, 22, 96, 320, 194, 347, 182, 226, 143, 290, 105, 135, 29, 198, 113, 302, 572, 53, 692, 168, 366
Offset: 1

Views

Author

Max Alekseyev, Apr 21 2023

Keywords

Crossrefs

A096264 Primes that do not divide any terms of the sequence f given by f(1) = 2, f(n+1) = f(n)^2-f(n)+1.

Original entry on oeis.org

5, 11, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 149, 151, 157, 163, 167, 173, 179, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283
Offset: 1

Views

Author

Jeffrey Shallit, Aug 04 2004

Keywords

Crossrefs

Complement of A007996 (in the primes).

Programs

  • Maple
    IsSylvester:=proc(p)
    local x,S ;x:=2 : S:=NULL: while not member(x, [S]) do if x=0 then
    return(true) fi; S := S ,x; x := (x^2-x+1) mod p od : return false end:
    L:=NULL:p:=5:while p<1000 do if not IsSylvester(p) then L:=L,p fi : p:=nextprime(p) od:
    L;
    # Robert FERREOL, Feb 14 2019

Extensions

Definition corrected (following a remark by Don Reble) by M. F. Hasler, Apr 24 2014
Showing 1-10 of 13 results. Next