cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007996 Primes that divide at least one term of Sylvester's sequence s = A000058: s(n+1) = s(n)^2 - s(n) + 1, s(0) = 2.

Original entry on oeis.org

2, 3, 7, 13, 43, 73, 139, 181, 547, 607, 1033, 1171, 1459, 1861, 1987, 2029, 2287, 2437, 4219, 4519, 6469, 7603, 8221, 9829, 12763, 13147, 13291, 13999, 15373, 17881, 17977, 19597, 20161, 20479, 20641, 20857, 20929, 21661, 23689, 23773, 27031
Offset: 1

Views

Author

Bennett Battaile (bennett.battaile(AT)autodesk.com)

Keywords

Comments

Or, let S_1 = [2] and let S_{n+1} = list formed by sorting the union of S_n together with all prime factors of 1 + Product_i S_n(i) into increasing order; sequence is limit as n -> infinity of S_n.
Prime divisors of the terms of Sylvester's sequence A000058. - Max Alekseyev, Jan 03 2004. Also of A007018. - N. J. A. Sloane, Jan 27 2007
Because all terms of the sequence s(n) are coprime, a prime can divide at most one term. Odoni shows that primes p > 3 in this sequence must satisfy p = 1 (mod 6). - T. D. Noe, Sep 25 2010
See A180871(n) for the index of the first term of A000058 (this is one less than the index of the s-sequence) divisible by a(n). - M. F. Hasler, Apr 24 2014

Crossrefs

The missing primes form A096264.
Cf. A180871 (k such that a(n) divides A000058(k)).
Cf. A323605 (smallest prime dividing A000058(n)).

Programs

  • Maple
    n := 1; for p do if isprime(p) then x := 2 mod p; S := {}; while not member(x,S) do if x=0 then a[n] := p; n := n+1; break; fi; S := S union {x}; x := (x^2-x+1) mod p; od; fi; od;
  • Mathematica
    t={}; p=1; While[Length[t]<100, p=NextPrime[p]; s=Mod[2,p]; k=0; modSet={}; While[s>0 && !MemberQ[modSet,s], AppendTo[modSet,s]; k++; s=Mod[s^2-s+1,p]]; If[s==0, AppendTo[t,{p,k}]]]; Transpose[t][[1]] (* T. D. Noe, Sep 25 2010 *)
  • PARI
    is(n)=my(k=Mod(2,n)); for(i=1, n, k=(k-1)*k+1; if(k==0, return(isprime(n)))); n==2 \\ Charles R Greathouse IV, Sep 30 2015

Extensions

More terms from Max Alekseyev, Jan 03 2004
Entry revised by N. J. A. Sloane, Jan 28 2007
Definition corrected (following a remark by Don Reble) by M. F. Hasler, Apr 24 2014

A362250 Primes dividing terms of A231831.

Original entry on oeis.org

3, 5, 7, 11, 19, 23, 89, 101, 137, 157, 211, 373, 659, 877, 881, 1399, 1597, 1627, 1663, 1811, 2029, 2069, 2087, 2153, 2381, 2677, 2939, 3433, 3491, 3511, 3617, 3673, 4111, 4127, 4547, 4721, 5059, 5483, 6529, 6793, 6827, 7757, 8209, 8297, 8677, 9203, 9463, 9811, 10139, 10159, 11321
Offset: 1

Views

Author

Max Alekseyev, Apr 13 2023

Keywords

Comments

Since the terms of A231831 are pairwise coprime, each prime divides at most one term of A231831. Indices of the corresponding terms are listed in A362251, and so a(n) divides A231831(A362251(n)).

Crossrefs

A362251 a(n) is the unique index such that prime A362250(n) divides A231831(a(n)).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 9, 4, 4, 8, 3, 31, 12, 7, 7, 9, 44, 8, 22, 29, 36, 37, 8, 21, 5, 26, 4, 20, 24, 12, 76, 30, 5, 47, 5, 13, 9, 25, 6, 41, 51, 9, 53, 6, 27, 39, 5, 12, 78, 64, 10, 185, 113, 205, 91, 85, 43, 195, 32, 117, 20, 133, 142, 119, 64, 70, 199, 41, 125, 79, 243, 70, 35, 105, 67, 156
Offset: 1

Views

Author

Max Alekseyev, Apr 13 2023

Keywords

Crossrefs

A362252 Primes dividing terms of A231830.

Original entry on oeis.org

5, 53, 89, 101, 373, 877, 1109, 1181, 1597, 1613, 2029, 2069, 2153, 2213, 2381, 2741, 3617, 4273, 6529, 6737, 7417, 7717, 11321, 12653, 13009, 13309, 16829, 17729, 23581, 23993, 25373, 32569, 33353, 33857, 34841, 35053, 36097, 37201, 38609, 41513, 42461, 48661, 55829, 58369, 59093, 63281
Offset: 1

Views

Author

Max Alekseyev, Apr 21 2023

Keywords

Comments

Since the terms of A231830 are pairwise coprime, each prime divides at most one term of A231830. Indices of the corresponding terms are listed in A362253, and so a(n) divides A231830(A362253(n)).

Crossrefs

A362253 a(n) is the unique index such that prime A362252(n) divides A231830(a(n)).

Original entry on oeis.org

1, 4, 7, 2, 19, 25, 30, 38, 45, 4, 26, 33, 27, 46, 10, 59, 102, 38, 84, 37, 22, 77, 80, 37, 240, 57, 45, 240, 173, 38, 41, 100, 88, 44, 114, 39, 63, 24, 14, 121, 177, 12, 155, 270, 65, 109, 44, 391, 54, 22, 96, 320, 194, 347, 182, 226, 143, 290, 105, 135, 29, 198, 113, 302, 572, 53, 692, 168, 366
Offset: 1

Views

Author

Max Alekseyev, Apr 21 2023

Keywords

Crossrefs

A323605 Smallest prime divisor of A000058(n) = A007018(n) + 1 (Sylvester's sequence).

Original entry on oeis.org

2, 3, 7, 43, 13, 3263443, 547, 29881, 5295435634831, 181, 2287, 73
Offset: 0

Views

Author

Robert FERREOL, Jan 19 2019

Keywords

Comments

a(n) is also the smallest prime divisor of A007018(n+1) that is not a divisor of A007018(n).
The prime numbers a(n) are all distinct, which proves the infinitude of the prime numbers (Saidak's proof).
a(12) <= 2589377038614498251653. - Daniel Suteu, Jan 20 2019
a(12)..a(50) = [?, 52387, 13999, 17881, 128551, 635263, ?, ?, 352867, 387347773, ?, 74587, ?, ?, 27061, 164299, 20929, 1171, ?, 1679143, ?, ?, 120823, 2408563, 38218903, 333457, 30241, 4219, 1085443, 7603, 1861, ?, 23773, 51769, 1285540933, 429547, ?, 8323570543, ?], where ? denote unknown values > 10^10. - Max Alekseyev, Oct 11 2023

Crossrefs

Programs

  • Maple
    with(numtheory):
    u:=1: P:=NULL: to 9 do P:=P,sort([op(divisors(u+1))])[2]: u:=u*(u+1) od:
    P;
  • PARI
    f(n)=if(n<1, n>=0, f(n-1)+f(n-1)^2); \\ A007018
    a(n)=divisors(f(n)+1)[2]; \\ Michel Marcus, Jan 20 2019

Formula

a(n) = A007996(m), where m is the smallest index such that A180871(m) = n. - Max Alekseyev, Oct 11 2023

Extensions

a(10)-a(11) from Daniel Suteu, Jan 20 2019
Showing 1-6 of 6 results.