cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008133 a(n) = floor(n/3)*floor((n+1)/3).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 36, 42, 49, 49, 56, 64, 64, 72, 81, 81, 90, 100, 100, 110, 121, 121, 132, 144, 144, 156, 169, 169, 182, 196, 196, 210, 225, 225, 240, 256, 256, 272, 289, 289, 306, 324, 324, 342, 361, 361, 380, 400, 400, 420, 441, 441, 462, 484, 484, 506
Offset: 0

Views

Author

Keywords

Comments

Oblong numbers and squares are subsequences: a(A016789(n)) = A002378(n); a(A008585(n)) = a(A016777(n)) = A000290(n). - Reinhard Zumkeller, Oct 09 2011

Crossrefs

Programs

  • Haskell
    a008133 n = a008133_list !! n
    a008133_list = zipWith (*) (tail ts) ts where ts = map (`div` 3) [0..]
    -- Reinhard Zumkeller, Oct 09 2011
    
  • Magma
    [Floor(n/3)*Floor((n+1)/3): n in [0..60]]; // Vincenzo Librandi, Aug 20 2011
    
  • Mathematica
    Table[Floor[n/3]Floor[(n+1)/3],{n,0,100}] (* or *) LinearRecurrence[{1,0,2,-2,0,-1,1},{0,0,0,1,1,2,4},100] (* Harvey P. Dale, Sep 21 2024 *)
  • PARI
    a(n) = floor(n/3)*floor((n+1)/3); /* Joerg Arndt, Mar 31 2013 */

Formula

From Paul Barry, Sep 14 2003: (Start)
Partial sums of A087509.
a(n+1) = Sum_{j=0..n} Sum_{k=0..j} [mod(j*k, 3)=2], where [] is the Iverson bracket. (End)
Empirical g.f.: -x^3*(x^2+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
From Amiram Eldar, May 10 2025: (Start)
Sum_{n>=3} 1/a(n) = Pi^2/3 + 1.
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*log(2)-1. (End)