A008278 Reflected triangle of Stirling numbers of 2nd kind, S(n,n-k+1), n >= 1, 1 <= k <= n.
1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 25, 15, 1, 1, 15, 65, 90, 31, 1, 1, 21, 140, 350, 301, 63, 1, 1, 28, 266, 1050, 1701, 966, 127, 1, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1
Offset: 1
Examples
The e.g.f. of [0,0,1,7,25,65,...], the k=3 column of A008278, but with offset n=0, is exp(x)*(1*(x^2)/2! + 4*(x^3)/3! + 3*(x^4)/4!). Triangle starts: 1; 1, 1; 1, 3, 1; 1, 6, 7, 1; 1, 10, 25, 15, 1; 1, 15, 65, 90, 31, 1; 1, 21, 140, 350, 301, 63, 1; 1, 28, 266, 1050, 1701, 966, 127, 1; 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1; ...
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., 1994.
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Noureddine Chair, Exact two-point resistance, and the simple random walk on the complete graph minus N edges, Ann. Phys. 327, No. 12, 3116-3129 (2012), eq. (27).
- Xi Chen, Bishal Deb, Alexander Dyachenko, Tomack Gilmore, and Alan D. Sokal, Coefficientwise total positivity of some matrices defined by linear recurrences, arXiv:2012.03629 [math.CO], 2020.
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015
- U. N. Katugampola, A new Fractional Derivative and its Mellin Transform, arXiv preprint arXiv:1106.0965 [math.CA], 2011.
- Eric Weisstein's World of Mathematics, Bell Polynomial
- Eric Weisstein's World of Mathematics, Empty Graph
- Eric Weisstein's World of Mathematics, Independence Polynomial
- Eric Weisstein's World of Mathematics, Sigma Polynomial
- Eric Weisstein's World of Mathematics, Stirling Number of the Second Kind
Crossrefs
Programs
-
Haskell
a008278 n k = a008278_tabl !! (n-1) !! (k-1) a008278_row n = a008278_tabl !! (n-1) a008278_tabl = iterate st2 [1] where st2 row = zipWith (+) ([0] ++ row') (row ++ [0]) where row' = reverse $ zipWith (*) [1..] $ reverse row -- Reinhard Zumkeller, Jun 22 2013
-
Mathematica
rows = 10; Flatten[Table[StirlingS2[n, k], {n, 1, rows}, {k, n, 1, -1}]] (* Jean-François Alcover, Nov 17 2011, *) Table[CoefficientList[x^n BellB[n, 1/x], x], {n, 10}] // Flatten (* Eric W. Weisstein, Apr 05 2017 *) n = 5; Grid[Prepend[Transpose[{Range[1, n], Table[D[f[Exp[x]], {x, i}], {i, 1, n}]}], {"Order","Derivative"}], Frame -> All, Spacings -> {2, 1}] (* Leonidas Liponis, Aug 27 2024 *)
-
PARI
for(n=1,10,for(k=1,n,print1(stirling(n,n-k+1,2),", "))) \\ Hugo Pfoertner, Aug 30 2020
Formula
T(n, k)=0 if n < k, T(n, 0)=0, T(1, 1)=1, T(n, k) = (n-k+1)*T(n-1, k-1) + T(n-1, k) otherwise.
O.g.f. for the k-th column: 1/(1-x) if k=1 and A(k,x):=((x^k)/(1-x)^(2*k+1))*Sum_{m=0..k-1} A008517(k,m+1)*x^m if k >= 2. A008517 is the second-order Eulerian triangle. Cf. p. 257, eq. (6.43) of the R. L. Graham et al. book. - Wolfdieter Lang, Oct 14 2005
E.g.f. for the k-th column (with offset n=0): E(k,x):=exp(x)*Sum_{m=0..k-1} A112493(k-1,m)*(x^(k-1+m))/(k-1+m)! if k >= 1. - Wolfdieter Lang, Oct 14 2005
a(n) = abs(A213735(n-1)). - Hugo Pfoertner, Sep 07 2020
Extensions
Name edited by Gus Wiseman, Aug 11 2020
Comments