A008307 Table T(n,k) giving number of permutations of [1..n] with order dividing k, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 10, 3, 2, 1, 1, 26, 9, 4, 1, 1, 1, 76, 21, 16, 1, 2, 1, 1, 232, 81, 56, 1, 6, 1, 1, 1, 764, 351, 256, 25, 18, 1, 2, 1, 1, 2620, 1233, 1072, 145, 66, 1, 4, 1, 1, 1, 9496, 5769, 6224, 505, 396, 1, 16, 3, 2, 1, 1, 35696, 31041, 33616, 1345, 2052, 1, 56, 9, 4, 1, 1
Offset: 1
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 1, 2, 1, 2, 1, 2, ... 1, 4, 3, 4, 1, 6, 1, 4, ... 1, 10, 9, 16, 1, 18, 1, 16, ... 1, 26, 21, 56, 25, 66, 1, 56, ... 1, 76, 81, 256, 145, 396, 1, 256, ... 1, 232, 351, 1072, 505, 2052, 721, 1072, ... 1, 764, 1233, 6224, 1345, 12636, 5761, 11264, ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
- J. D. Dixon, B. Mortimer, Permutation Groups, Springer (1996), Exercise 1.2.13.
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
- M. B. Kutler, C. R. Vinroot, On q-Analogs of Recursions for the Number of Involutions and Prime Order Elements in Symmetric Groups, JIS 13 (2010) #10.3.6, eq (5) for primes k.
Crossrefs
Programs
-
Maple
A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*A(n-j,k), j=numtheory[divisors](k)))) end: seq(seq(A(1+d-k, k), k=1..d), d=1..12); # Alois P. Heinz, Feb 14 2013 # alternative A008307 := proc(n,m) local x,d ; add(x^d/d, d=numtheory[divisors](m)) ; exp(%) ; coeftayl(%,x=0,n) ; %*n! ; end proc: seq(seq(A008307(1+d-k,k),k=1..d),d=1..12) ; # R. J. Mathar, Apr 30 2017
-
Mathematica
t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = Sum[(n!/(n - d + 1)!)*t[n - d, k], {d, Divisors[k]}]; t[, ] = 1; Flatten[ Table[ t[n - k, k], {n, 0, 12}, {k, 1, n}]] (* Jean-François Alcover, Dec 12 2011, after given formula *)
Formula
T(n+1,k) = Sum_{d|k} (n)_(d-1)*T(n-d+1,k), where (n)_i = n!/(n - i)! = n*(n - 1)*(n - 2)*...*(n - i + 1) is the falling factorial.
E.g.f. for n-th row: Sum_{n>=0} T(n,k)*t^n/n! = exp(Sum_{d|k} t^d/d).
Extensions
More terms from Vladeta Jovovic, Apr 13 2001
Comments