A008318 Smallest number strictly greater than previous one which is the sum of squares of two previous distinct terms (a(1)=1, a(2)=2).
1, 2, 5, 26, 29, 677, 680, 701, 842, 845, 866, 1517, 458330, 458333, 458354, 459005, 459170, 462401, 462404, 462425, 463076, 463241, 491402, 491405, 491426, 492077, 492242, 708965, 708968, 708989, 709640, 709805, 714026, 714029, 714050, 714701
Offset: 1
References
- F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- Mihaly Bencze [Beneze], Smarandache Recurrence Type Sequences, in Bull. Pure Appl. Sciences, Vol. 16E, No. 2, 231-236, 1997.
- F. Smarandache, Definitions, Solved and Unsolved Problems, Conjectures, ...
- F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
- Eric Weisstein's World of Mathematics, Smarandache Sequences.
Crossrefs
Cf. A192476.
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a008318 n = a008318_list !! (n-1) a008318_list = f [1] (singleton 1) where f xs s = m : f (m:xs) (foldl (flip insert) s' (map (+ m^2) (map (^ 2) xs))) where (m,s') = deleteFindMin s -- Reinhard Zumkeller, Aug 15 2011
-
Mathematica
a[1]=1; a[2]=2; a[n_] := a[n] = First[ Select[ Sort[ Flatten[ Table[a[j]^2 + a[k]^2, {j, 1, n-1}, {k, j+1, n-1}]]], # > a[n-1] & , 1]]; Table[a[n], {n, 1, 36}](* Jean-François Alcover, Nov 10 2011 *)
Extensions
More terms from David W. Wilson
Comments