Original entry on oeis.org
1, 2, 5, 26, 677, 701, 842, 866, 1517, 458330, 458333, 458354
Offset: 1
- F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000
A003095
a(n) = a(n-1)^2 + 1 for n >= 1, with a(0) = 0.
Original entry on oeis.org
0, 1, 2, 5, 26, 677, 458330, 210066388901, 44127887745906175987802, 1947270476915296449559703445493848930452791205, 3791862310265926082868235028027893277370233152247388584761734150717768254410341175325352026
Offset: 0
- Mordechai Ben-Ari, Mathematical Logic for Computer Science, Third edition, 173-203.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 443-448.
- R. K. Guy, How to factor a number, Proc. 5th Manitoba Conf. Numerical Math., Congress. Num. 16 (1975), 49-89.
- R. Penrose, The Emperor's New Mind, Oxford, 1989, p. 122.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..13
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- A. Berger and T. P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Transactions (2021) Vol. 1, No. 1, Article 1.
- P. Flajolet and A. M. Odlyzko, Limit distributions of coefficients of iterates of polynomials with applications to combinatorial enumerations, Math. Proc. Camb. Phil. Soc., 96 (1984), 237-253.
- Claudio Gentile, Fabio Vitale, and Anand Rajagopalan, Flattening a Hierarchical Clustering through Active Learning, arXiv:1906.09458 [cs.LG], 2019.
- Spencer Hamblen, Rafe Jones, and Kalyani Madhu, The density of primes in orbits of z^d + c, arXiv:1303.6513 [math.NT], 2013; to appear, Int. Math. Res. Not., c. 2015.
- Dimitur Krustev, Simple Programs on Binary Trees Testing and Decidable Equivalence, 2016.
- Robin Lamarche-Perrin, An Information-theoretic Framework for the Lossy Compression of Link Streams, arXiv:1807.06874 [cs.DS], 2018.
- R. Lamarche-Perrin, Y. Demazeau, and J.-M. Vincent, A Generic Algorithmic Framework to Solve Special Versions of the Set Partitioning Problem, Preprint 105, Max-Planck-Institut fur Mathematik in den Naturwissenschaften, Leipzig, 2014.
- C. Lenormand, Arbres et permutations II, see p. 6.
- Saad Mneimneh, Simple Variations on the Tower of Hanoi to Guide the Study of Recurrences and Proofs by Induction, Department of Computer Science, Hunter College, CUNY, 2019.
- Michael Penn, a stylish proof that..., YouTube video, 2021.
- R. P. Stanley, Letter to N. J. A. Sloane, c. 1991
- M. Tainiter, Algebraic approach to stopping variable problems: Representation theory and applications, J. Combinatorial Theory 9 1970 148-161.
- P. Tarau, A Logic Programming Playground for Lambda Terms, Combinators, Types and Tree-based Arithmetic Computations, arXiv preprint arXiv:1507.06944 [cs.LO], 2015.
- Stephan Wagner and Volker Ziegler, Irrationality of growth constants associated with polynomial recursions, arXiv:2004.09353 [math.NT], 2020.
- Wikipedia, Herbrand Structure
- Damiano Zanardini, Computational Logic, UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid.
- Index entries for sequences of form a(n+1)=a(n)^2 + ...
- Index to divisibility sequences
- Index entries for sequences related to Benford's law
Cf.
A137560, which enumerates binary trees of height less than n and exactly j leaf nodes. -
Robert Munafo, Nov 03 2009
-
function A003095(n)
if n eq 0 then return 0;
else return 1 + A003095(n-1)^2;
end if; return A003095;
end function;
[A003095(n): n in [0..12]]; // G. C. Greubel, Nov 29 2022
-
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)^2+1) end:
seq(a(n), n=0..10); # Alois P. Heinz, Jul 11 2019
-
NestList[#^2+1&,0,10] (* Harvey P. Dale, Dec 17 2010 *)
-
{a(n) = if( n<1, 0, 1 + a(n-1)^2)}; /* Michael Somos, Jan 01 2013 */
-
def A003095(n): return 0 if (n==0) else 1 + A003095(n-1)^2
[A003095(n) for n in range(13)] # G. C. Greubel, Nov 29 2022
A192476
Monotonic ordering of set S generated by these rules: if x and y are in S then x^2 + y^2 is in S, and 1 is in S.
Original entry on oeis.org
1, 2, 5, 8, 26, 29, 50, 65, 68, 89, 128, 677, 680, 701, 740, 842, 845, 866, 905, 1352, 1517, 1682, 2501, 2504, 2525, 2564, 3176, 3341, 4226, 4229, 4250, 4289, 4625, 4628, 4649, 4688, 4901, 5000, 5066, 5300, 5465, 6725, 7124, 7922, 7925, 7946, 7985
Offset: 1
1^2+1^2=2, 1^2+2^2=5, 2^2+2^2=8, 1^2+5^2=26.
-
import Data.Set (singleton, deleteFindMin, insert)
a192476 n = a192476_list !! (n-1)
a192476_list = f [1] (singleton 1) where
f xs s =
m : f xs' (foldl (flip insert) s' (map (+ m^2) (map (^ 2) xs')))
where xs' = m : xs
(m,s') = deleteFindMin s
-- Reinhard Zumkeller, Aug 15 2011
-
start = {1}; f[x_, y_] := x^2 + y^2 (* start is a subset of t, and if x,y are in t then f(x,y) is in t. *)
b[z_] := Block[{w = z}, Select[Union[Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < 30000 &]];
t = FixedPoint[b, start] (* A192476 *)
Differences[t]
(* based on program by Robert G. Wilson v at A009293 *)
A329429
Irregular triangular array, read by rows: row n shows the coefficients of the polynomial p(n,x) defined in Comments.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 8, 8, 4, 1, 26, 80, 144, 168, 138, 80, 32, 8, 1, 677, 4160, 13888, 31776, 54792, 74624, 82432, 74944, 56472, 35296, 18208, 7664, 2580, 672, 128, 16, 1, 458330, 5632640, 36109952, 158572864, 531441232, 1439520512, 3264101376, 6342205824
Offset: 0
Rows 0..4:
1;
1, 1;
2, 2, 1;
5, 8, 8, 4, 1;
26, 80, 144, 168, 138, 80, 32, 8, 1.
Rows 0..4, the polynomials u(n,x):
1,
1 + x^2,
2 + 2 x^2 + x^4,
5 + 8 x^2 + 8 x^4 + 4 x^6 + x^8,
26 + 80 x^2 + 144 x^4 + 168 x^6 + 138 x^8 + 80 x^10 + 32 x^12 + 8 x^14 + x^16.
- L. E. Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York, 1952, p. 403.
-
f[x_] := x^2 + 1; u[0, x_] := 1;
u[1, x_] := f[x]; u[n_, x_] := f[u[n - 1, x]]
Column[Table [Expand[u[n, x]], {n, 0, 5}]] (* A329429 polynomials u(n,x) *)
Table[CoefficientList[u[n, Sqrt[x]], x], {n, 0, 7}] (* A329429 array *)
Showing 1-4 of 4 results.
Comments