A008334 Number of distinct primes dividing p-1, where p = n-th prime.
0, 1, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 3, 4, 3, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4, 3, 2, 3, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 3, 4, 3, 2, 3, 3, 2, 3, 3, 4, 2, 2, 2, 3, 3
Offset: 1
Keywords
References
- N. P. Ryzhova, Asymptotic formulae in a binary problem of shifted prime numbers (in Russian), Additive problems of number theory, Interuniv. Collect. Sci. Works, Kujbyshev 1985 (1985), pp. 25-31.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- H. Halberstam, On the Distribution of Additive Number-Theoretic Functions (III), Journal of the London Mathematical Society, Vol. s1-31, No. 1 (1956), pp. 14-27.
- C. B. Haselgrove, Some Theorems in the Analytic Theory of Numbers, Journal of the London Mathematical Society, Vol. s1-26, No. 4 (1951), pp. 273-277.
Programs
-
Maple
for i from 1 to 500 do if isprime(i) then print(nops(factorset(i-1))); fi; od;
-
Mathematica
PrimeNu[#]&/@(Prime[Range[100]]-1) (* Harvey P. Dale, May 05 2018 *)
-
PARI
a(n,p=prime(n))=omega(p-1) \\ Charles R Greathouse IV, Nov 29 2024
Formula
Sum_{k; prime(k)<=n} a(k) = n*log(log(n))/log(n) + O(n/log(n)) (Haselgrove, 1951; Halberstam, 1956; Ryzhova, 1985). - Amiram Eldar, Mar 05 2021 [corrected by Charles R Greathouse IV, Nov 29 2024]
Extensions
Definition clarified by Harvey P. Dale, May 05 2018
Comments