cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A023508 Sum of exponents in prime-power factorization of n-th prime - 1.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 4, 3, 2, 3, 3, 4, 4, 3, 2, 3, 2, 4, 3, 3, 5, 3, 2, 4, 6, 4, 3, 2, 5, 5, 4, 3, 4, 3, 3, 4, 4, 5, 2, 3, 2, 5, 3, 7, 4, 4, 4, 3, 2, 4, 4, 3, 6, 4, 8, 2, 3, 5, 4, 5, 3, 3, 4, 3, 5, 3, 4, 6, 2, 4, 6, 2, 3, 4, 5, 2, 3, 5, 6, 5, 3, 5, 3, 7, 3, 3, 7, 5, 4, 4, 2, 2, 6, 4, 3, 2, 3, 5, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A001222(A006093(n)). - R. J. Mathar, Feb 06 2019

A067466 Primes p such that p-1 has 2 distinct prime factors.

Original entry on oeis.org

7, 11, 13, 19, 23, 29, 37, 41, 47, 53, 59, 73, 83, 89, 97, 101, 107, 109, 113, 137, 149, 163, 167, 173, 179, 193, 197, 227, 233, 251, 263, 269, 293, 317, 347, 353, 359, 383, 389, 401, 433, 449, 467, 479, 487, 503, 509, 557, 563, 569, 577, 587, 593, 641, 653
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[120]], PrimeNu[#-1] == 2 &] (* Amiram Eldar, Jun 06 2022 *)
  • PARI
    lista(nn) = {forprime(p=1, nn, if (omega(p-1) == 2, print1(p, ", ")););} \\ Michel Marcus, Nov 22 2013

A067467 Primes p such that p-1 has 3 distinct prime factors.

Original entry on oeis.org

31, 43, 61, 67, 71, 79, 103, 127, 131, 139, 151, 157, 181, 191, 199, 223, 229, 239, 241, 271, 277, 281, 283, 307, 311, 313, 337, 349, 367, 373, 379, 397, 409, 419, 431, 439, 443, 457, 461, 491, 499, 521, 523, 541, 599, 601, 607, 613, 617, 619, 643, 647, 659
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],PrimeNu[#-1]==3&] (* Harvey P. Dale, Mar 13 2022 *)
  • PARI
    lista(nn) = {forprime(p=1, nn, if (omega(p-1) == 3, print1(p, ", ")););} \\ Michel Marcus, Nov 22 2013

A378123 a(n) = number of prime divisors of the sum of the first n odd primes.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 2, 4, 2, 2, 2, 3, 4, 3, 2, 3, 1, 3, 1, 3, 2, 3, 2, 5, 1, 5, 2, 4, 1, 3, 2, 3, 3, 3, 1, 3, 2, 3, 1, 3, 2, 3, 2, 4, 3, 3, 2, 2, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2024

Keywords

Examples

			3+5+7+11+13 = 39 = 3*13, so a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[Total[Prime[1+Range[n]]]]; Array[a, 500]
  • PARI
    a378123(n)=omega(sum(k=2,n+1,prime(k))) \\ Hugo Pfoertner, Nov 19 2024

Formula

a(n) = A001221(A071148(n)).

A245908 The number of distinct prime factors of prime(n)^2-1.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 2, 3, 3, 4, 3, 3, 4, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 5, 4, 5, 4, 4, 4, 3, 4, 4, 4, 5, 4, 3, 4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 5, 3, 5, 4, 4, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 05 2014

Keywords

Crossrefs

Programs

  • Magma
    [#PrimeDivisors(NthPrime(n)^2 -1): n in [1..100]]; // Vincenzo Librandi, Apr 27 2019
  • Maple
    A245908 := proc(n)
        A082863(ithprime(n)) ;
    end proc:
  • Mathematica
    Table[PrimeNu[Prime[n]^2 - 1], {n, 100}] (* Wesley Ivan Hurt, Aug 05 2014 *)
  • PARI
    vector(100, n, omega(prime(n)^2-1)) \\ Derek Orr, Aug 05 2014
    

Formula

a(n) = A082863(prime(n)).
a(n) = A008334(n) + A008335(n) - 1, if n>1.

A378122 a(n) = number of prime divisors of the sum of the first n primes.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 2, 2, 3, 4, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 4, 2, 3, 3, 2, 2, 2, 4, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2024

Keywords

Examples

			2+3+5+7+11 = 28 = 2*2*7, so a(5) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[Total[Prime[Range[n]]]]; Array[a, 500]
Showing 1-6 of 6 results.