cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008365 13-rough numbers: positive integers that have no prime factors less than 13.

Original entry on oeis.org

1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269
Offset: 1

Views

Author

Keywords

Comments

For n > 1, the smallest prime factor of a(n) is >= 13.
Conjecture: Numbers n such that n^24 is congruent to {1,421,631,841} mod 2310. - Gary Detlefs, Dec 30 2011
This sequence is exactly the set of positive values of r such that ( Product_{k = 0..10} n + k*r )/11! is an integer for all n. - Peter Bala, Nov 14 2015
The asymptotic density of this sequence is 16/77. - Amiram Eldar, Sep 30 2020

Crossrefs

For k-rough numbers with other values of k, see A000027, A005408, A007310, A007775, A008364, A008365, A008366, A166061, A166063.

Programs

  • Haskell
    a008365 n = a008365_list !! (n-1)
    a008365_list = 1 : filter ((> 11) . a020639) [1..]
    -- Reinhard Zumkeller, Jan 06 2013
  • Maple
    for i from 1 to 500 do if gcd(i,2310) = 1 then print(i); fi; od;
  • Mathematica
    Select[ Range[ 300 ], GCD[ #1, 2310 ]==1& ]
  • PARI
    isA008365(n) = gcd(n,2310)==1 \\ Michael B. Porter, Oct 10 2009
    

Formula

G.f: x*P(x)/(1 - x - x^480 + x^481) where P(x) is a polynomial of degree 480. - Benedict W. J. Irwin, Mar 18 2016
77*n/16 - 13 < a(n) < 77*n/16 + 8. - Charles R Greathouse IV, Mar 21 2023
a(n) = a(n-1) + a(n-480) - a(n-481). - Charles R Greathouse IV, Mar 21 2023

Extensions

New name following a comment of Michael B. Porter, Mar 21 2023