A008365 13-rough numbers: positive integers that have no prime factors less than 13.
1, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 257, 263, 269
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Peter Bala, A property of p-rough numbers.
- Benedict W. J. Irwin, Generating Function.
- Eric Weisstein's World of Mathematics, Rough Number.
- Index entries for linear recurrences with constant coefficients, order 481.
- Index entries for sequences related to smooth numbers
Crossrefs
Programs
-
Haskell
a008365 n = a008365_list !! (n-1) a008365_list = 1 : filter ((> 11) . a020639) [1..] -- Reinhard Zumkeller, Jan 06 2013
-
Maple
for i from 1 to 500 do if gcd(i,2310) = 1 then print(i); fi; od;
-
Mathematica
Select[ Range[ 300 ], GCD[ #1, 2310 ]==1& ]
-
PARI
isA008365(n) = gcd(n,2310)==1 \\ Michael B. Porter, Oct 10 2009
Formula
G.f: x*P(x)/(1 - x - x^480 + x^481) where P(x) is a polynomial of degree 480. - Benedict W. J. Irwin, Mar 18 2016
77*n/16 - 13 < a(n) < 77*n/16 + 8. - Charles R Greathouse IV, Mar 21 2023
a(n) = a(n-1) + a(n-480) - a(n-481). - Charles R Greathouse IV, Mar 21 2023
Extensions
New name following a comment of Michael B. Porter, Mar 21 2023
Comments