cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008367 Composite but smallest prime factor >= 17.

Original entry on oeis.org

289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411, 1457
Offset: 1

Views

Author

Keywords

Comments

Composite numbers k such that k^720 mod 30030 = 1. - Gary Detlefs, May 02 2012
The asymptotic density of this sequence is 192/1001. - Amiram Eldar, Mar 22 2021

Crossrefs

Intersection of A002808 and A008366.
Cf. A287391.

Programs

  • GAP
    Filtered([17..1500],n->PowerMod(n,720,30030)=1 and not IsPrime(n)); # Muniru A Asiru, Nov 24 2018
  • Maple
    for i from 1 to 2000 do if gcd(i,30030) = 1 and not isprime(i) then print(i); fi; od;
  • Mathematica
    Select[ Range[ 1500 ], (GCD[ #1, 30030 ]==1&&!PrimeQ[ #1 ])& ]
    Select[Range[2000], ! PrimeQ[#] && FactorInteger[#][[1, 1]] >= 17 &] (* T. D. Noe, Mar 16 2013 *)
  • PARI
    is(n)={gcd(n,30030)==1 && !ispseudoprime(n)} \\ M. F. Hasler, Oct 04 2018
    

Formula

For 1 <= n < 107, a(n) = A287391(n+2); then a(107) = 2329, a(108) = 2363 are not in A287391, but again a(n) = A287391(n) for 108 < n < 120. - M. F. Hasler, Oct 04 2018