A008367 Composite but smallest prime factor >= 17.
289, 323, 361, 391, 437, 493, 527, 529, 551, 589, 629, 667, 697, 703, 713, 731, 779, 799, 817, 841, 851, 893, 899, 901, 943, 961, 989, 1003, 1007, 1037, 1073, 1081, 1121, 1139, 1147, 1159, 1189, 1207, 1219, 1241, 1247, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411, 1457
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
GAP
Filtered([17..1500],n->PowerMod(n,720,30030)=1 and not IsPrime(n)); # Muniru A Asiru, Nov 24 2018
-
Maple
for i from 1 to 2000 do if gcd(i,30030) = 1 and not isprime(i) then print(i); fi; od;
-
Mathematica
Select[ Range[ 1500 ], (GCD[ #1, 30030 ]==1&&!PrimeQ[ #1 ])& ] Select[Range[2000], ! PrimeQ[#] && FactorInteger[#][[1, 1]] >= 17 &] (* T. D. Noe, Mar 16 2013 *)
-
PARI
is(n)={gcd(n,30030)==1 && !ispseudoprime(n)} \\ M. F. Hasler, Oct 04 2018
Formula
For 1 <= n < 107, a(n) = A287391(n+2); then a(107) = 2329, a(108) = 2363 are not in A287391, but again a(n) = A287391(n) for 108 < n < 120. - M. F. Hasler, Oct 04 2018
Comments