cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008383 Coordination sequence for A_4 lattice.

Original entry on oeis.org

1, 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750, 15620, 20260, 25740, 32130, 39500, 47920, 57460, 68190, 80180, 93500, 108220, 124410, 142140, 161480, 182500, 205270, 229860, 256340, 284780, 315250, 347820, 382560, 419540, 458830, 500500, 544620
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 5*n*(7*n^2+5)/3: n in [0..45]]; // G. C. Greubel, May 25 2023
    
  • Maple
    a:= n-> `if`(n=0, 1, 35/3*n^3+25/3*n): seq (a(n), n=0..50);
  • Mathematica
    CoefficientList[Series[(1+16x+36x^2+16x^3+x^4)/(1-x)^4,{x,0,40}],x] (* Harvey P. Dale, Dec 01 2013 *)
    Join[{1}, LinearRecurrence[{4, -6, 4, -1}, {20, 110, 340, 780}, 40]] (* Jean-François Alcover, Jan 07 2019 *)
  • SageMath
    [5*n*(7*n^2+5)/3+int(n==0) for n in range(46)] # G. C. Greubel, May 25 2023

Formula

a(n) = 5*n*(7*n^2 + 5)/3, a(0) = 1.
G.f.: (1+16*x+36*x^2+16*x^3+x^4)/(1-x)^4 = 1+10*x*(2+3*x+2*x^2)/(x-1)^4. - Colin Barker, Apr 13 2012
E.g.f.: (1/3)*(3 + 5*x*(12 + 21*x + 7*x^2)*exp(x)). - G. C. Greubel, May 25 2023