cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008389 Coordination sequence for A_7 lattice.

Original entry on oeis.org

1, 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2703512, 5025692, 8823080, 14768810, 23744840, 36881420, 55599992, 81659522, 117206264, 164826956, 227605448, 309182762, 413820584, 546468188, 712832792, 919453346
Offset: 0

Views

Author

Keywords

Crossrefs

Row 7 of A103881.

Programs

  • Magma
    [1] cat [2 +n^2*(143*n^4 +770*n^2 +707)/30: n in [1..40]]; // G. C. Greubel, May 26 2023
    
  • Maple
    1, seq(2 +n^2*(143*n^4 +770*n^2 +707)/30, n=1..50);
  • Mathematica
    Table[n^2*(143*n^4 +770*n^2 +707)/30 +2 -Boole[n==0], {n,0,40}] (* G. C. Greubel, May 26 2023 *)
  • SageMath
    [2 +n^2*(143*n^4 +770*n^2 +707)/30 -int(n==0) for n in range(41)] # G. C. Greubel, May 26 2023

Formula

G.f.: (1+x)*(1+48*x+393*x^2+832*x^3+393*x^4+48*x^5+x^6)/(1-x)^7. - Colin Barker, Sep 26 2012
a(n) = 2 + n^2*(143*n^4 +770*n^2 +707)/30 with n>0, a(0)=1. - Bruno Berselli, Sep 26 2012
E.g.f.: -1 + (1/30)*(60 +1620*x +10530*x^2 +17490*x^3 +10065*x^4 +2145*x^5 +143*x^6)*exp(x). - G. C. Greubel, May 26 2023