cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008397 Coordination sequence for E_7 lattice.

Original entry on oeis.org

1, 126, 2898, 25886, 133506, 490014, 1433810, 3573054, 7902594, 15942206, 29896146, 52834014, 88892930, 143501022, 223622226, 338022398, 497556738, 715478526, 1007769170, 1393489566
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [1] cat [(2/5)*(74*n^6 -6*n^5 +130*n^4 +30*n^3 +106*n^2 -24*n + 5): n in [1..30]]; // G. C. Greubel, May 29 2023
    
  • Maple
    a:= n-> `if`(n=0, 1, 148/5*n^6-12/5*n^5+52*n^4+12*n^3+212/5*n^2-48/5*n+2):
    seq(a(n), n=0..25);
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,126,2898,25886,133506, 490014,1433810,3573054},20] (* Harvey P. Dale, Nov 12 2014 *)
  • SageMath
    [2*(74*n^6 -6*n^5 +130*n^4 +30*n^3 +106*n^2 -24*n +5)//5 - int(n==0) for n in range(31)] # G. C. Greubel, May 29 2023

Formula

a(n) = (2/5)*(74*n^6 - 6*n^5 + 130*n^4 + 30*n^3 + 106*n^2 - 24*n + 5) for n >= 1.
Bacher et al. give a g.f.
G.f.: (1 + 119*x + 2037*x^2 + 8211*x^3 + 8787*x^4 + 2037*x^5 + 119*x^6 + x^7)/(1-x)^7. - Colin Barker, Sep 26 2012