cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008399 Coordination sequence for E_6 lattice.

Original entry on oeis.org

1, 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104, 2376126, 3816648, 5885028, 8767512, 12684042, 17891064, 24684336, 33401736, 44426070, 58187880, 75168252, 95901624, 120978594, 151048728, 186823368, 229078440, 278657262, 336473352, 403513236
Offset: 0

Views

Author

Keywords

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Crossrefs

Programs

  • Magma
    [1] cat [9*n*(13*n^2+7)*(n^2+1)/5: n in [1..40]]; // G. C. Greubel, May 29 2023
    
  • Maple
    1, seq(117/5*n^5+36*n^3+63/5*n, n=1..30);
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,72,1062,6696,26316,77688, 189810},30] (* Harvey P. Dale, Oct 24 2022 *)
  • SageMath
    [9*n*(13*n^2+7)*(n^2+1)//5 +int(n==0) for n in range(41)] # G. C. Greubel, May 29 2023

Formula

a(n) = 9*n*(13*n^2+7)*(n^2+1)/5 for n >= 1.
Bacher et al. give a g.f.
G.f.: (1+66*x+645*x^2+1384*x^3+645*x^4+66*x^5+x^6)/(1-x)^6 = 1 + 18*x*(4+35*x+78*x^2+35*x^3+4*x^4)/(1-x)^6. - Colin Barker, Sep 26 2012
E.g.f.: 1 + (1/5)*x*(360 + 2295*x + 3105*x^2 + 1170*x^3 + 117*x^4 )*exp(x). - G. C. Greubel, May 29 2023