cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 45 results. Next

A288471 Exponents a(1), a(2), ... such that E_8, 1 + 480*q + 61920*q^2 + ... (A008410) is equal to (1-q)^a(1) (1-q^2)^a(2) (1-q^3)^a(3) ... .

Original entry on oeis.org

-480, 53520, -8192480, 1417877520, -261761532384, 50337746997520, -9956715872256480, 2010450258635669520, -412391756829925376480, 85648872592091236716816, -17967933476075186380800480, 3800832540589574135423637520
Offset: 1

Views

Author

Seiichi Manyama, Jun 21 2017

Keywords

Crossrefs

Cf. A288968 (k=2), A110163 (k=4), A288851 (k=6), this sequence (k=8), A289024 (k=10), A288990/A288989 (k=12), A289029 (k=14).
Cf. A008410 (E_8), A008683, A288261 (E_10/E_8), A289638.

Formula

a(n) = 16 + (2/(3*n)) * Sum_{d|n} A008683(n/d) * A288261(d).
a(n) = 2 * A110163(n) = 2 * A013953(n^2). - Seiichi Manyama, Jun 22 2017
a(n) = (1/n) * Sum_{d|n} A008683(n/d) * A289638(d). - Seiichi Manyama, Jul 09 2017
a(n) ~ 2 * (-1)^n * exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 08 2018

A289638 Coefficients in expansion of -q*E'_8/E_8 where E_8 is the Eisenstein Series (A008410).

Original entry on oeis.org

-480, 106560, -24577920, 5671616640, -1308807662400, 302026457514240, -69697011105795840, 16083602074756972800, -3711525811469352966240, 856488725919603559612800, -197647268236827050188805760, 45609990487075191657212674560
Offset: 1

Views

Author

Seiichi Manyama, Jul 09 2017

Keywords

Crossrefs

-q*E'_k/E_k: A289635 (k=2), A289636 (k=4), A289637 (k=6), this sequence (k=8), A289639 (k=10), A289640 (k=14).
Cf. A006352 (E_2), A008410 (E_8), A287933, A288471.

Programs

  • Mathematica
    nmax = 20; Rest[CoefficientList[Series[-480*x*Sum[k*DivisorSigma[7, k]*x^(k-1), {k, 1, nmax}]/(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jul 09 2017 *)

Formula

a(n) = Sum_{d|n} d * A288471(d).
a(n) = 2*A288261(n)/3 + 16*A000203(n).
a(n) = -Sum_{k=1..n-1} A008410(k)*a(n-k) - A008410(n)*n.
G.f.: 2/3 * E_6/E_4 - 2/3 * E_2 = 2/3 * E_10/E_8 - 2/3 * E_2.
a(n) ~ 2 * (-1)^n * exp(Pi*sqrt(3)*n). - Vaclav Kotesovec, Jul 09 2017

A289744 Coefficients in expansion of q*E'_8 where E_8 is the Eisenstein Series (A008410).

Original entry on oeis.org

480, 123840, 3150720, 31704960, 187502400, 812885760, 2767107840, 8116473600, 20671878240, 48375619200, 102892268160, 208111357440, 391550752320, 713913822720, 1230765753600, 2077817249280, 3348363579840, 5333344585920, 8152110268800, 12384908524800
Offset: 1

Views

Author

Seiichi Manyama, Jul 11 2017

Keywords

Crossrefs

(-1)^(k/2)*q*E'_{k}: A076835 (k=2), A145094 (k=4), A145095 (k=6), this sequence (k=8), A289745 (k=10), A289746 (k=14).

Programs

Formula

a(n) = 480*A282060(n) = 480*n*A013955(n).

A004009 Expansion of Eisenstein series E_4(q) (alternate convention E_2(q)); theta series of E_8 lattice.

Original entry on oeis.org

1, 240, 2160, 6720, 17520, 30240, 60480, 82560, 140400, 181680, 272160, 319680, 490560, 527520, 743040, 846720, 1123440, 1179360, 1635120, 1646400, 2207520, 2311680, 2877120, 2920320, 3931200, 3780240, 4747680, 4905600, 6026880
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
E_8 is also the Barnes-Wall lattice in 8 dimensions.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The E_8 lattice is integral, unimodular, and even. The 240 shortest nonzero vectors in the lattice have norm squared 2. Of these vectors, 128 are all half-integer, and 112 are all integer. - Michael Somos, Jun 10 2019

Examples

			G.f. = 1 + 240*x + 2160*x^2 + 6720*x^3 + 17520*x^4 + 30240*x^5 + 60480*x^6 + ...
G.f. = 1 + 240*q^2 + 2160*q^4 + 6720*q^6 + 17520*q^8 + 30240*q^10 + 60480*q^12 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 123.
  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Collected Papers of Srinivasa Ramanujan, Chap. 16, Ed. G. H. Hardy et al., Chelsea, NY, 1962.
  • S. Ramanujan, On Certain Arithmetical Functions, Messenger Math., 45 (1916), 11-15 (Eq. (25)). Ramanujan's Papers, p. 196, Ed. B. J. Venkatachala et al., Prism Books, Bangalore 2000.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994
  • N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A046948 (partial sums), A000143, A108091 (eighth root).
Cf. A006352 (E_2), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A007331 (theta_2(q)^8 / 256), A000143 (theta_3(q)^8), A035016 (theta_4(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 4), 29) [1]; /* Michael Somos, May 11 2015 */
    
  • Magma
    L := Lattice("E",8); A := ThetaSeries(L, 57); A; /* Michael Somos, Jun 10 2019 */
    
  • Maple
    with(numtheory); E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(4);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 240 DivisorSigma[ 3, n]]; (* Michael Somos, Jul 11 2011 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 + 14 t2 t3 + t3^2], {q, 0, n}]; (* Michael Somos, Jun 04 2014 *)
    max = 30; s = 1 + 240*Sum[k^3*(q^k/(1 - q^k)), {k, 1, max}] + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, after Gene Ward Smith *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^2 - t2 t3 + t3^2], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, 240 * sigma(n, 3))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^24 + 256 * x * eta(x^2 + A)^24) / (eta(x + A) * eta(x^2 + A))^8, n))}; /* Michael Somos, Dec 30 2008 */
    
  • PARI
    q='q+O('q^50); Vec((eta(q)^24+256*q*eta(q^2)^24)/(eta(q)*eta(q^2))^8) \\ Altug Alkan, Sep 30 2018
    
  • Python
    from sympy import divisor_sigma
    def a(n): return 1 if n == 0 else 240 * divisor_sigma(n, 3)
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 15 2017
  • Sage
    ModularForms(Gamma1(1), 4, prec=30).0 ; # Michael Somos, Jun 04 2013
    

Formula

Can also be expressed as E4(q) = 1 + 240*Sum_{i >= 1} i^3 q^i/(1 - q^i) - Gene Ward Smith, Aug 22 2006
Theta series of E_8 lattice = 1 + 240 * Sum_{m >= 1} sigma_3(m) * q^(2*m), where sigma_3(m) is the sum of the cubes of the divisors of m (A001158).
Expansion of (phi(-q)^8 - (2 * phi(-q) * phi(q))^4 + 16 * phi(q)^8) in powers of q where phi() is a Ramanujan theta function.
Expansion of (eta(q)^24 + 256 * eta(q^2)^24) / (eta(q) * eta(q^2))^8 in powers of q. - Michael Somos, Dec 30 2008
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 33*v^2 + 256*w^2 - 18*u*v + 16*u*w - 288*v*w . - Michael Somos, Jan 05 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 16*u2^2 + 81*u3^2 + 1296*u6^2 - 14*u1*u2 - 18*u1*u3 + 30*u1*u6 + 30*u2*u3 - 288*u2*u6 - 1134*u3*u6 . - Michael Somos, Apr 15 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = u^3*v + 9*w*u^3 - 84*u^2*v^2 + 246*u*v^3 - 253*v^4 - 675*w*u^2*v + 729*w^2*u^2 - 4590*w*u*v^2 + 19926*w*v^3 - 54675*w^2*u*v + 59049*w^3*u + 531441*w^3*v - 551124*w^2*v^2 . - Michael Somos, Apr 15 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = (t/i)^4 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
Convolution square is A008410. A008411 is convolution of this sequence with A008410.
Expansion of Ramanujan's function Q(q^2) = 12 (omega/Pi)^4 g2 (Weierstrass invariant) in powers of q^2.
Expansion of a(q) * (a(q)^3 + 8*c(q)^3) in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Jan 14 2015
G.f. is (theta_2(q)^8 + theta_3(q)^8 + theta_4(q)^8) / 2 where q = exp(Pi i t). So a(n) = A008430(n) + 128*A007331(n) (= A000143(2*n) + 128*A007331(n) = A035016(2*n) + 128*A007331(n)). - Seiichi Manyama, Sep 30 2018
a(n) = 240*A001158(n) if n>0. - Michael Somos, Oct 01 2018
Sum_{k=1..n} a(k) ~ 2 * Pi^4 * n^4 / 3. - Vaclav Kotesovec, Jan 14 2024

A013973 Expansion of Eisenstein series E_6(q) (alternate convention E_3(q)).

Original entry on oeis.org

1, -504, -16632, -122976, -532728, -1575504, -4058208, -8471232, -17047800, -29883672, -51991632, -81170208, -129985632, -187132176, -279550656, -384422976, -545530104, -715608432, -986161176, -1247954400, -1665307728, -2066980608, -2678616864, -3243917376, -4159663200
Offset: 0

Views

Author

Keywords

Comments

Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 504*q - 16632*q^2 - 122976*q^3 - 532728*q^4 - 1575504*q^5 + ...
		

References

  • W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 53.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • Jean-Pierre Serre, "A Course in Arithmetic", Springer, 1978
  • Joseph H. Silverman, "Advanced Topics in the Arithmetic of Elliptic Curves", Springer, 1994

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A001160, A286346 (eta(q)^24 / eta(q^2)^12), A286399 (eta(q^2)^12 * eta(q^4)^8 / eta(q)^8).

Programs

  • Magma
    Basis( ModularForms( Gamma1(1), 6), 25); /* Michael Somos, Apr 01 2015 */
  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(6);
    # alternative
    A013973 := proc(n)
        if n = 0 then
            1;
        else
            -504*numtheory[sigma][5](n) ;
        end if;
    end proc:
    seq(A013973(n),n=0..10) ; # R. J. Mathar, Feb 22 2021
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -504 DivisorSigma[ 5, n]]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 33 (t2 + t3) t2 t3 + t3^3], {q, 0, n}]; (* Michael Somos, Apr 21 2013 *)
    a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) / 2], {q, 0, 2 n}]; (* Michael Somos, Jun 04 2014 *)
    a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, (e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2) / QPochhammer[ q^2]^12], {q, 0, n}]; (* Michael Somos, Apr 01 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^3 - 3/2 (t2 + t3) t2 t3 + t3^3], {q, 0, 2 n}]; (* Michael Somos, Jul 31 2016 *)
    terms = 25; E6[x_] = 1-(12/BernoulliB[6])*Sum[k^5*x^k/(1-x^k), {k, terms}]; CoefficientList[E6[x] + O[x]^terms, x] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -504 * sigma( n, 5))};
    
  • PARI
    {a(n) = my(A, A1, A4); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A4 = 32 * x * eta(x^4 + A)^8; polcoeff( (A1 + A4) * (A1^2 - 16 * A1 * A4 - 8 * A4^2) / eta(x^2 + A)^12, n))}; /* Michael Somos, Dec 30 2008 */
    
  • Sage
    ModularForms( Gamma1(1), 6, prec=25).0; # Michael Somos, Jun 04 2013
    

Formula

E6(q) = 1 - 504*Sum_{i>=1} sigma_5(i)q^i where sigma_5(n) is A001160, the sum of fifth powers of the divisors of n. It can also be expressed as E6(q) = 1 - 504*Sum_{i>=1} i^5*q^i/(1-q^i). - Gene Ward Smith, Aug 22 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2*v - 8*u^2*w - 66*u*v^2 + 592*u*v*w - 512*u*w^2 + 121*v^3 - 4224*v^2*w + 4096*v*w^2. - Michael Somos, Apr 10 2005
Expansion of Ramanujan's function R(q) = 216*g3 (Weierstrass invariant).
Expansion of (eta(q)^8 + 32 * eta(q^4)^8) * (eta(q)^16 - 512 * eta(q)^8 * eta(q^4)^8 - 8192 * eta(q^4)^16) / eta(q^2)^12 in powers of q. - Michael Somos, Dec 30 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^6 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
E6(q) = eta(q)^24 / eta(q^2)^12 - 480 * eta(q^2)^12 - 16896 * eta(q^2)^12 * eta(q^4)^8 / eta(q)^8 + 8192 * eta(q^4)^24 / eta(q^2)^12. - Seiichi Manyama, May 08 2017

A006352 Coefficients in expansion of Eisenstein series E_2 (also called E_1 or G_2).

Original entry on oeis.org

1, -24, -72, -96, -168, -144, -288, -192, -360, -312, -432, -288, -672, -336, -576, -576, -744, -432, -936, -480, -1008, -768, -864, -576, -1440, -744, -1008, -960, -1344, -720, -1728, -768, -1512, -1152, -1296, -1152, -2184, -912, -1440, -1344, -2160, -1008, -2304, -1056, -2016, -1872, -1728
Offset: 0

Views

Author

Keywords

Comments

Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
The series Q(q), R(q) are modular forms, but P(q) is not. - Michael Somos, May 18 2017

Examples

			G.f. = 1 - 24*x - 72*x^2 - 96*x^3 - 168*x^4 - 144*x^5 - 288*x^6 + ...
		

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see pp. 111 and 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 19, Eq. (17).

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Cf. A000594 (Delta), A076835, A145155 (Delta').

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(2);
  • Mathematica
    a[n_] := -24*DivisorSigma[1, n]; a[0] = 1; Table[a[n], {n, 0, 46}] (* Jean-François Alcover, Dec 12 2012 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -24 DivisorSigma[ 1, n]]; (* Michael Somos, Apr 08 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -24 * sigma(n))}; /* Michael Somos, Apr 09 2003 */
    
  • Python
    from sympy import divisor_sigma
    def a(n): return 1 if n == 0 else -24 * divisor_sigma(n)
    [a(n) for n in range(51)]  # Indranil Ghosh, Jul 15 2017

Formula

a(n) = -24*sigma(n) = -24*A000203(n), for n>0.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 + 4*u2^2 + 9*u3^2 + 36*u6^2 - 8*u1*u2 + 6*u1*u3 + 24*u2*u6 - 72*u3*u6. - Michael Somos, May 29 2005
G.f.: 1 - 24*sum(k>=1, k*x^k/(1 - x^k)).
G.f.: 1 + 24 *x*deriv(eta(x))/eta(x) where eta(x) = prod(n>=1, 1-x^n); (cf. A000203). - Joerg Arndt, Sep 28 2012
G.f.: 1 - 24*x/(1-x) + 48*x^2/(Q(0) - 2*x^2 + 2*x), where Q(k)= (2*x^(k+2) - x - 1)*k - 1 - 2*x + 3*x^(k+2) - x*(k+1)*(k+3)*(1-x^(k+2))^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 16 2013
G.f.: q*Delta'/Delta where Delta is the generating function of Ramanujan's tau function (A000594). - Seiichi Manyama, Jul 15 2017

A013974 Eisenstein series E_10(q) (alternate convention E_5(q)).

Original entry on oeis.org

1, -264, -135432, -5196576, -69341448, -515625264, -2665843488, -10653352512, -35502821640, -102284205672, -264515760432, -622498190688, -1364917062432, -2799587834736, -5465169838656, -10149567696576, -18177444679944
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 - 264*q - 135432*q^2 - 5196576*q^3 - 69341448*q^4 - 515625264*q^5 + ...
		

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.

Crossrefs

Cf. A008410.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).
Convolution of A004009 and A013973.

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(10);
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -264 DivisorSigma[ 9, n]]; (* Michael Somos, Jun 04 2013 *)
    a[ n_] := SeriesCoefficient[ With[{t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, t2^5 - 19 t2 t3 (t2^3 + t3^3) - 494 (t2 t3)^2 (t2 + t3) + t3^5], {q, 0, n}]; (* Michael Somos, Jun 04 2013 *)
    terms = 17; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[10] + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, -264 * sigma( n, 9))};
    
  • Sage
    ModularForms( Gamma1(1), 10, prec=13).0; # Michael Somos, Jun 04 2013

Formula

Sum_{n >= 0} a(n)/exp(Pi)^(2n) = 0 or is very close to 0. - Gerald McGarvey, Jan 25 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / t) = - (t/i)^10 * f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 30 2008
G.f.: 1 - 264*Sum_{k>=1} k^9*x^k/(1 - x^k). - Ilya Gutkovskiy, Aug 31 2017

A058550 Eisenstein series E_14(q) (alternate convention E_7(q)).

Original entry on oeis.org

1, -24, -196632, -38263776, -1610809368, -29296875024, -313495116768, -2325336249792, -13195750342680, -61004818143672, -240029297071632, -828545091454368, -2568152034827232, -7269002558214096, -19051479894545856, -46708710975763776
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2000

Keywords

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(14);
  • Mathematica
    terms = 16;
    E14[x_] = 1 - 24*Sum[k^13*x^k/(1 - x^k), {k, 1, terms}];
    E14[x] + O[x]^terms // CoefficientList[#, x]&
    (* or: *)
    Table[If[n == 0, 1, -24*DivisorSigma[13, n]], {n, 0, terms-1}] (* Jean-François Alcover, Feb 26 2018 *)
    (* or *)
    terms = 15; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[E4[x]^2*E6[x], {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
  • PARI
    a(n)=if(n<1,n==0,-24*sigma(n,13))

A029828 Eisenstein series E_12(q) (alternate convention E_6(q)), multiplied by 691.

Original entry on oeis.org

691, 65520, 134250480, 11606736960, 274945048560, 3199218815520, 23782204031040, 129554448266880, 563087459516400, 2056098632318640, 6555199353000480, 18693620658498240, 48705965462306880, 117422349017369760, 265457064498837120, 566735214731736960, 1153203117089652720
Offset: 0

Views

Author

Keywords

References

  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962, p. 53.
  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A037164.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(12);
  • Mathematica
    Table[If[n == 0, 691, 65520 DivisorSigma[11, n]], {n, 0, 16}] (* Jean-François Alcover, Feb 26 2018 *)
  • PARI
    a(n)=if(n<1,691*(n==0),65520*sigma(n,11))

A029829 Eisenstein series E_16(q) (alternate convention E_8(q)), multiplied by 3617.

Original entry on oeis.org

3617, 16320, 534790080, 234174178560, 17524001357760, 498046875016320, 7673653657232640, 77480203842286080, 574226476491096000, 3360143509958850240, 16320498047409790080, 68172690124863440640
Offset: 0

Views

Author

Keywords

References

  • N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 111.
  • J.-P. Serre, Course in Arithmetic, Chap. VII, Section 4.

Crossrefs

Cf. A058552.
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A008410 (E_8), A013974 (E_10), A029828 (E_12), A058550 (E_14), A029829 (E_16), A029830 (E_20), A029831 (E_24).

Programs

  • Maple
    E := proc(k) local n,t1; t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n,n=1..60); series(t1,q,60); end; E(16);
  • Mathematica
    terms = 12;
    E16[x_] = 3617 + 16320*Sum[k^15*x^k/(1 - x^k), {k, 1, terms}];
    E16[x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)
  • PARI
    a(n)=if(n<1,3617*(n==0),16320*sigma(n,15))

Formula

a(n) = 1617*A282012(n) + 2000*A282287(n). - Seiichi Manyama, Feb 11 2017
Showing 1-10 of 45 results. Next