A008415 Coordination sequence for 7-dimensional cubic lattice.
1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762, 361550, 596610, 948430, 1459810, 2184462, 3188738, 4553486, 6376034, 8772302, 11879042, 15856206, 20889442, 27192718, 35011074, 44623502, 56345954, 70534478
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Crossrefs
Cf. A008414.
Programs
-
Mathematica
CoefficientList[Series[((1+x)/(1-x))^7,{x,0,30}],x] (* Harvey P. Dale, Oct 11 2015 *)
-
PARI
a(n) = 2*(4*n^6+70*n^4+196*n^2+45)/45-0^n; \\ Altug Alkan, Dec 18 2017
-
Python
R = [] for n in range(29): r=4*n*n*(2*n*n +7)*(n*n +14)//45 +2-0**n R.append(r) print(R) # George F. Johnson Feb 02 2013
Formula
G.f.: ((1+x)/(1-x))^7.
a(n) = 4*n*n*(2*n*n + 7)*(n*n + 14)/45 + 2 - 0^n. - George F. Johnson, Feb 21 2013
n*a(n) = 14*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018