cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A008416 Coordination sequence for 8-dimensional cubic lattice.

Original entry on oeis.org

1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, 1229360, 2187520, 3732560, 6140800, 9785072, 15158272, 22900496, 33830016, 48978352, 69629696, 97364944, 134110592, 182192752, 244396544, 324031120, 425000576
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 8-dimensional cyclotomic lattice Z[zeta_16].

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[((1 + x)/(1 - x))^8, {x, 0, 26}], x] (* Michael De Vlieger, Dec 18 2017 *)

Formula

G.f.: ((1+x)/(1-x))^8.
a(n) = A008415(n) + A008415(n-1) + a(n-1). - Bruce J. Nicholson, Dec 17 2017
n*a(n) = 16*a(n-1) + (n-2)*a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018

A019563 Coordination sequence for C_7 lattice.

Original entry on oeis.org

1, 98, 1666, 12642, 59906, 209762, 596610, 1459810, 3188738, 6376034, 11879042, 20889442, 35011074, 56345954, 87588482, 132127842, 194158594, 278799458, 392220290, 541777250, 736156162, 985524066
Offset: 0

Views

Author

Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)

Keywords

Crossrefs

Cf. A008415.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x+1)*(1+90*x+911*x^2+2092*x^3+911*x^4 + 90*x^5+x^6)/(1-x)^7 )); // G. C. Greubel, Dec 08 2018
    
  • Maple
    seq(coeff(series((x+1)*(1+90*x+911*x^2+2092*x^3+911*x^4+90*x^5+x^6)/(1-x)^7,x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 08 2018
  • Mathematica
    Join[{1}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {98, 1666, 12642, 59906, 209762, 596610, 1459810}, 21]] (* Jean-François Alcover, Dec 08 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((x+1)*(1+90*x+911*x^2+2092*x^3+911*x^4 + 90*x^5+x^6)/(1-x)^7) \\ G. C. Greubel, Dec 08 2018
    
  • Sage
    s=((x+1)*(1+90*x+911*x^2+2092*x^3+911*x^4 + 90*x^5+x^6)/(1-x)^7 ).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 08 2018

Formula

G.f.: (x + 1)*(1 + 90*x + 911*x^2 + 2092*x^3 + 911*x^4 + 90*x^5 + x^6)/(1 - x)^7.
a(n) = A008415(2*n). - Seiichi Manyama, Jun 08 2018

A191596 Expansion of (1+x)^4/(1-x)^7.

Original entry on oeis.org

1, 11, 62, 242, 743, 1925, 4396, 9108, 17469, 31471, 53834, 88166, 139139, 212681, 316184, 458728, 651321, 907155, 1241878, 1673882, 2224607, 2918861, 3785156, 4856060, 6168565, 7764471, 9690786, 12000142, 14751227, 18009233, 21846320
Offset: 0

Views

Author

Bruno Berselli, Jun 08 2011

Keywords

Comments

The first, second and third differences are in A069038, A001846 and A008412, respectively.
Inverse binomial transform of this sequence: 1, 10, 41, 88, 104, 64, 16, 0, 0 (0 continued).
Also (by Superseeker), the n-th coefficient of the expansion of ((1+x)^4/(1-x)^7)*(1+x)^n is A006976(n-1).

Crossrefs

Cf. A008415, A001848, A069039, A008412, A001846, A069038, A061927 (for type of g.f.).

Programs

  • Magma
    [(2*n^6+18*n^5+80*n^4+210*n^3+323*n^2+267*n+90)/90: n in [0..30]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maple
    A191596:=n->(n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90: seq(A191596(n), n=0..40); # Wesley Ivan Hurt, Nov 20 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^4/(1 - x)^7, {x, 0, 30}], x] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • Maxima
    makelist(coeff(taylor((1+x)^4/(1-x)^7, x, 0, n), x, n), n, 0, 30);
    
  • PARI
    a(n)=(((((n+n+18)*n+80)*n+210)*n+323)*n+267)/90*n+1 \\ Charles R Greathouse IV, Jun 08 2011

Formula

G.f.: (1+x)^4/(1-x)^7.
a(n) = (n+1)*(n+2)*(2*n^4+12*n^3+40*n^2+66*n+45)/90.
a(n) = a(-n-3) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
By Superseeker:
a(n)+a(n+1) = A069039(n+2),
a(n+2)-a(n) = A001847(n+2),
a(n+2)+2*a(n+1)+a(n) = A001848(n+2).
Showing 1-4 of 4 results.