A008453 Number of ways of writing n as a sum of 11 squares.
1, 22, 220, 1320, 5302, 15224, 33528, 63360, 116380, 209550, 339064, 491768, 719400, 1095160, 1538416, 1964160, 2624182, 3696880, 4763220, 5686648, 7217144, 9528816, 11676280, 13495680, 16317048, 20787470, 25022184, 27785120, 32503680
Offset: 0
Keywords
References
- E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 121.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 314.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Shi-Chao Chen, Congruences for rs(n), Journal of Number Theory, Volume 130, Issue 9, September 2010, Pages 2028-2032.
- Shaun Cooper, On the number of representations of certain integers as sums of 11 or 13 squares, J. Number Theory 103 (2) (2003) 135-162
- Index entries for sequences related to sums of squares
Programs
-
Maple
(sum(x^(m^2),m=-10..10))^11; # Alternative: A008453list := proc(len) series(JacobiTheta3(0, x)^11, x, len+1); seq(coeff(%, x, j), j=0..len-1) end: A008453list(29); # Peter Luschny, Oct 02 2018
-
Mathematica
Table[SquaresR[11, n], {n, 0, 28}] (* Ray Chandler, Nov 28 2006 *)
Formula
G.f.: theta_3(0,q)^11, where theta_3 is the 3rd Jacobi theta function. - Ilya Gutkovskiy, Jan 13 2017
a(n) = (22/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
Extensions
Extended by Ray Chandler, Nov 28 2006