cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008497 a(n) = floor(n/5)*floor((n+1)/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 4, 4, 6, 9, 9, 9, 9, 12, 16, 16, 16, 16, 20, 25, 25, 25, 25, 30, 36, 36, 36, 36, 42, 49, 49, 49, 49, 56, 64, 64, 64, 64, 72, 81, 81, 81, 81, 90, 100, 100, 100, 100, 110, 121, 121, 121, 121
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A002266.

Programs

  • GAP
    List([0..55], n-> Int(n/5)*Int((n+1)/5) ); # G. C. Greubel, Nov 08 2019
  • Magma
    [&*[Floor((n+j)/5): j in [0..1]]: n in [0..55]]; // G. C. Greubel, Nov 08 2019
    
  • Maple
    seq( mul(floor((n+j)/5), j=0..1), n=0..55); # G. C. Greubel, Nov 08 2019
  • Mathematica
    Times@@@Partition[Floor[Range[0,60]/5],2,1] (* or *) LinearRecurrence[ {1,0,0,0,2,-2,0,0,0,-1,1},{0,0,0,0,0,1,1,1,1,2,4},60] (* Harvey P. Dale, Feb 01 2015 *)
    Product[Floor[(Range[55] +j-1)/5], {j,0,1}] (* G. C. Greubel, Nov 08 2019 *)
  • PARI
    a(n) = (n\5)*((n+1)\5); \\ Michel Marcus, Jan 06 2017
    
  • PARI
    vector(56, n, prod(j=0,1, (n+j-1)\5) ) \\ G. C. Greubel, Nov 08 2019
    
  • Sage
    [product(floor((n+j)/5) for j in (0..1)) for n in (0..55)] # G. C. Greubel, Nov 08 2019
    

Formula

From R. J. Mathar, Apr 16 2010: (Start)
a(n) = A002266(n)*A002266(n+1).
a(n)= a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11).
G.f.: x^5*(1+x^4)/ ((x^4+x^3+x^2+x+1)^2 * (1-x)^3). (End)
From Amiram Eldar, May 10 2025: (Start)
Sum_{n>=5} 1/a(n) = 2*Pi^2/3 + 1.
Sum_{n>=5} (-1)^(n+1)/a(n) = 2*log(2)-1. (End)