A008487 Expansion of (1-x^5) / (1-x)^5.
1, 5, 15, 35, 70, 125, 205, 315, 460, 645, 875, 1155, 1490, 1885, 2345, 2875, 3480, 4165, 4935, 5795, 6750, 7805, 8965, 10235, 11620, 13125, 14755, 16515, 18410, 20445, 22625, 24955, 27440, 30085, 32895, 35875, 39030, 42365, 45885, 49595, 53500, 57605, 61915
Offset: 0
References
- R. Bott, The geometry and the representation theory of compact Lie groups, in: Representation Theory of Lie Groups, in: London Math. Soc. Lecture Note Ser., vol. 34, Cambridge University Press, Cambridge, 1979, pp. 65-90.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 158.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- M. Beck and S. Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
concatenation([1], List([1..50], n-> 5*n*(n^2 +5)/6)); # G. C. Greubel, Nov 07 2019
-
Magma
[1] cat [5*n*(n^2 +5)/6: n in [1..50]]; // G. C. Greubel, Nov 07 2019
-
Maple
1, seq(5*n*(n^2 +5)/6, n=1..50); # G. C. Greubel, Nov 07 2019
-
Mathematica
CoefficientList[Series[(1-x^5)/(1-x)^5, {x, 0, 50}], x] (* Stefano Spezia, Dec 30 2018 *)
-
PARI
Vec((1-x^5) / (1-x)^5+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012; corrected by Colin Barker, Jan 06 2017
-
Sage
[1]+[5*n*(n^2 +5)/6 for n in (1..50)] # G. C. Greubel, Nov 07 2019
Formula
a(n) is the sum of 5 consecutive tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)(n+2)(n+3)/6 = A000292(n) for n>0, a(0) = 1. a(n) = A000292(n-4) + A000292(n-3) + A000292(n-2) + A000292(n-1) + A000292(n) for n>0, a(0) = 1. - Alexander Adamchuk, May 20 2006
Equals binomial transform of [1, 4, 6, 4, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 29 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4. - Colin Barker, Jan 06 2017
For n >= 1, a(n) = (5*n^3 + 25*n)/6. - Christopher Hohl, Dec 30 2018
E.g.f.: 1 + x*(30 + 15*x + 5*x^2)*exp(x)/6. - G. C. Greubel, Nov 07 2019
Comments