A008499 Number of 5-dimensional centered tetrahedral numbers.
1, 7, 28, 84, 210, 462, 923, 1709, 2975, 4921, 7798, 11914, 17640, 25416, 35757, 49259, 66605, 88571, 116032, 149968, 191470, 241746, 302127, 374073, 459179, 559181, 675962, 811558, 968164, 1148140
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 227.
- Milan Janjic, Two Enumerative Functions
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
B:=Binomial;; List([0..30], n-> B(n+6,6)-B(n,6) ); # G. C. Greubel, Nov 09 2019
-
Magma
[(6*n^5+15*n^4+160*n^3+225*n^2+314*n+120)/120: n in [0..40] ]; // Vincenzo Librandi, Aug 21 2011
-
Maple
seq(binomial(n+6,6) - binomial(n,6), n=0..30); # G. C. Greubel, Nov 09 2019
-
Mathematica
Table[Binomial[n+6,6]-Binomial[n,6],{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,28,84,210,462},30] (* Harvey P. Dale, Sep 15 2011 *)
-
PARI
vector(31, n, b=binomial; b(n+5,6) - b(n-1,6) ) \\ G. C. Greubel, Nov 09 2019
-
Sage
b=binomial; [b(n+6,6) - b(n,6) for n in (0..30)] # G. C. Greubel, Nov 09 2019
Formula
G.f.: (1-x^6)/(1-x)^7.
a(n) = C(n, 0) + 6*C(n, 1) + 15*C(n, 2) + 15*C(n, 3) + 10*C(n, 4) + 6*C(n, 5); a(n) = C(n+6, 6) - C(n, 6); a(n)=(6*n^5 + 15*n^4 + 160*n^3 + 225*n^2 + 314*n + 120)/120. - Paul Barry, Jul 01 2003
a(0)=1, a(1)=7, a(2)=28, a(3)=84, a(4)=210, a(5)=462; for n>5, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Sep 15 2011
Comments