cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008499 Number of 5-dimensional centered tetrahedral numbers.

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 923, 1709, 2975, 4921, 7798, 11914, 17640, 25416, 35757, 49259, 66605, 88571, 116032, 149968, 191470, 241746, 302127, 374073, 459179, 559181, 675962, 811558, 968164, 1148140
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of (1,6,15,20,15,6,0,0,0,...). - Paul Barry, Jul 01 2003
If X is an n-set and Y a fixed 6-subset of X then a(n-6) is equal to the number of 6-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007

Programs

  • GAP
    B:=Binomial;; List([0..30], n-> B(n+6,6)-B(n,6) ); # G. C. Greubel, Nov 09 2019
  • Magma
    [(6*n^5+15*n^4+160*n^3+225*n^2+314*n+120)/120: n in [0..40] ]; // Vincenzo Librandi, Aug 21 2011
    
  • Maple
    seq(binomial(n+6,6) - binomial(n,6), n=0..30); # G. C. Greubel, Nov 09 2019
  • Mathematica
    Table[Binomial[n+6,6]-Binomial[n,6],{n,0,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,28,84,210,462},30] (* Harvey P. Dale, Sep 15 2011 *)
  • PARI
    vector(31, n, b=binomial; b(n+5,6) - b(n-1,6) ) \\ G. C. Greubel, Nov 09 2019
    
  • Sage
    b=binomial; [b(n+6,6) - b(n,6) for n in (0..30)] # G. C. Greubel, Nov 09 2019
    

Formula

G.f.: (1-x^6)/(1-x)^7.
a(n) = C(n, 0) + 6*C(n, 1) + 15*C(n, 2) + 15*C(n, 3) + 10*C(n, 4) + 6*C(n, 5); a(n) = C(n+6, 6) - C(n, 6); a(n)=(6*n^5 + 15*n^4 + 160*n^3 + 225*n^2 + 314*n + 120)/120. - Paul Barry, Jul 01 2003
a(0)=1, a(1)=7, a(2)=28, a(3)=84, a(4)=210, a(5)=462; for n>5, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Sep 15 2011