cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008518 Triangle of Eulerian numbers with rows multiplied by 1 + x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 22, 12, 1, 1, 27, 92, 92, 27, 1, 1, 58, 359, 604, 359, 58, 1, 1, 121, 1311, 3607, 3607, 1311, 121, 1, 1, 248, 4540, 19912, 31238, 19912, 4540, 248, 1, 1, 503, 15110, 102842, 244424, 244424, 102842, 15110, 503, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle begins:
   1;
   1,   1;
   1,   2,    1;
   1,   5,    5,    1;
   1,  12,   22,   12,    1;
   1,  27,   92,   92,   27,    1;
   1,  58,  359,  604,  359,   58,   1;
   1, 121, 1311, 3607, 3607, 1311, 121, 1;
   ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 254.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.

Crossrefs

Cf. A000007, A008292, A098558 (row sums), A177042 (T(2*n, n)).
Columns include A000325 (k=1).

Programs

  • Magma
    Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >;
    [Eulerian(n, k-1) + Eulerian(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jun 18 2024
    
  • Mathematica
    t[n_ /; n >= 0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = (n-k) t[n-1, k-1] + (k+1) t[n-1, k];
    A[n_, k_] /; k == n+1 = 0; A[n_, k_] := t[n, n-k];
    T[n_, k_] := A[n, k] + A[n, k+1];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, after Franck Maminirina Ramaharo *)
  • SageMath
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in range(k+2))
    flatten([[Eulerian(n,k-1) + Eulerian(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 18 2024

Formula

E.g.f.: (exp(x) - y*exp(y*x))/(exp(y*x) - y*exp(x)). - Vladeta Jovovic, Apr 06 2001
T(n,k) = A123125(n,k) + A123125(n,k+1), with A123125(n,n+1) = 0. - Franck Maminirina Ramaharo, Oct 21 2018
From G. C. Greubel, Jun 18 2024: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)

Extensions

More terms from Vladeta Jovovic, Apr 06 2001