A008527 Coordination sequence for body-centered tetragonal lattice.
1, 10, 34, 74, 130, 202, 290, 394, 514, 650, 802, 970, 1154, 1354, 1570, 1802, 2050, 2314, 2594, 2890, 3202, 3530, 3874, 4234, 4610, 5002, 5410, 5834, 6274, 6730, 7202, 7690, 8194, 8714, 9250, 9802, 10370, 10954, 11554, 12170, 12802, 13450, 14114, 14794, 15490, 16202, 16930, 17674
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
- M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
Concatenation([1], List([1..40], n-> 2*(1+4*n^2) )); # G. C. Greubel, Nov 09 2019
-
Magma
[1] cat [2*(1 + 4*n^2): n in [1..50]]; // G. C. Greubel, Nov 09 2019
-
Maple
1, seq(8*k^2+2, k=1..50);
-
Mathematica
a[0]:= 1; a[n_]:= 8n^2 +2; Table[a[n], {n,0,50}] (* Alonso del Arte, Sep 06 2011 *) LinearRecurrence[{3,-3,1},{1,10,34,74},50] (* Harvey P. Dale, Feb 13 2022 *)
-
PARI
vector(51, n, if(n==1,1, 2*(1+(2*n-2)^2)) ) \\ G. C. Greubel, Nov 09 2019
-
Sage
[1]+[2*(1+4*n^2) for n in (1..40)] # G. C. Greubel, Nov 09 2019
Formula
a(0) = 1; a(n) = 8*n^2+2 for n>0.
From Gary W. Adamson, Dec 27 2007: (Start)
a(n) = (2n+1)^2 + (2n-1)^2 for n>0.
Binomial transform of [1, 9, 15, 1, -1, 1, -1, 1, ...]. (End)
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: (1+x)*(1+6*x+x^2)/(1-x)^3. (End)
From Bruce J. Nicholson, Jul 31 2019: (Start) Assume n>0.
a(n) = 2 * A053755(n).
E.g.f.: -1 + 2*exp(x)*(1 + 2*x)^2. - Stefano Spezia, Aug 02 2019
Sum_{n>=0} 1/a(n) = 3/4+1/8*Pi*coth(Pi/2) = 1.178172.... - R. J. Mathar, May 07 2024
Comments