cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008530 Coordination sequence for 4-dimensional primitive di-isohexagonal orthogonal lattice.

Original entry on oeis.org

1, 12, 60, 180, 408, 780, 1332, 2100, 3120, 4428, 6060, 8052, 10440, 13260, 16548, 20340, 24672, 29580, 35100, 41268, 48120, 55692, 64020, 73140, 83088, 93900, 105612, 118260, 131880, 146508, 162180, 178932, 196800, 215820, 236028, 257460, 280152, 304140, 329460, 356148, 384240
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for 4-dimensional cyclotomic lattice Z[zeta_12].

Examples

			3*a(5) = 2340 = (2*5+1)^3 + (2*5-1)^3 + (5+1)^3 + (5-1)^3. - _Bruno Berselli_, Jan 31 2013
		

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Programs

  • GAP
    Concatenation([1], List([1..45], n-> 6*n*(1+n^2) )); # G. C. Greubel, Nov 10 2019
  • Magma
    [1]cat[6*n^3+6*n: n in [1..45]]; // Vincenzo Librandi, Apr 16 2012
    
  • Maple
    1, seq( 6*k^3+6*k, k=1..45);
  • Mathematica
    CoefficientList[Series[(1+4*x+x^2)^2/(1-x)^4,{x,0,45}],x] (* Vincenzo Librandi, Apr 16 2012 *)
    LinearRecurrence[{4,-6,4,-1}, {1,12,60,180,408}, 45] (* G. C. Greubel, Nov 10 2019 *)
  • PARI
    vector(46, n, if(n==1,1, 6*(n-1)*(1+(n-1)^2)) ) \\ G. C. Greubel, Nov 10 2019
    
  • Sage
    [1]+[6*n*(1+n^2) for n in (1..45)] # G. C. Greubel, Nov 10 2019
    

Formula

G.f.: (1+4*x+x^2)^2/(1-x)^4. - Colin Barker, Apr 14 2012
3*a(n) = (2*n+1)^3 + (2*n-1)^3 + (n+1)^3 + (n-1)^3 for n>0. - Bruno Berselli, Jan 31 2013
E.g.f.: 1 + x*(12 + 18*x + 6*x^2)*exp(x). - G. C. Greubel, Nov 10 2019