cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008534 Coordination sequence for {A_6}* lattice.

Original entry on oeis.org

1, 14, 98, 462, 1596, 4410, 10374, 21658, 41272, 73206, 122570, 195734, 300468, 446082, 643566, 905730, 1247344, 1685278, 2238642, 2928926, 3780140, 4818954, 6074838, 7580202, 9370536, 11484550, 13964314, 16855398, 20207012, 24072146, 28507710, 33574674, 39338208, 45867822
Offset: 0

Views

Author

Keywords

Comments

Equally, coordination sequence for 6-dimensional cyclotomic lattice Z[zeta_14].

References

  • M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.

Programs

  • GAP
    Concatenation([1], List([1..45], n-> 7*n*(6+5*n^2+n^4)/6 )); # G. C. Greubel, Nov 10 2019
  • Magma
    [1] cat [7*n*(6+5*n^2+n^4)/6: n in [1..45]]; // G. C. Greubel, Nov 10 2019
    
  • Maple
    1, seq( (7*k^5+35*k^3+42*k)/6, k=1..40);
  • Mathematica
    CoefficientList[Series[(x^6 +8x^5 +29x^4 +64x^3 +29x^2 +8x +1)/(x-1)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 20 2013 *)
    Table[If[n==0,1, 7*n*(6+5*n^2+n^4)/6], {n,0,40}] (* G. C. Greubel, Nov 10 2019 *)
  • PARI
    vector(46, n, if(n==1,1, 7*(n-1)*(6+5*(n-1)^2+(n-1)^4)/6 ) ) \\ G. C. Greubel, Nov 10 2019
    
  • Sage
    [1]+[7*n*(6+5*n^2+n^4)/6 for n in (1..45)]; # G. C. Greubel, Nov 10 2019
    

Formula

G.f.: (x^6+8*x^5+29*x^4+64*x^3+29*x^2+8*x+1)/(x-1)^6. [Conway-Sloane] - Colin Barker, Sep 21 2012
a(n) = (7/6)*n*(n^2+2)*(n^2+3) for n>0, a(0)=1. - Bruno Berselli, Feb 28 2013
E.g.f.: 1 + x*(84 + 210*x + 210*x^2 + 70*x^3 + 7*x^4)*exp(x)/6. - G. C. Greubel, Nov 10 2019