A008550 Table T(n,k), n>=0 and k>=0, read by antidiagonals: the k-th column given by the k-th Narayana polynomial.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 11, 4, 1, 1, 1, 42, 45, 19, 5, 1, 1, 1, 132, 197, 100, 29, 6, 1, 1, 1, 429, 903, 562, 185, 41, 7, 1, 1, 1, 1430, 4279, 3304, 1257, 306, 55, 8, 1, 1, 1, 4862, 20793, 20071, 8925, 2426, 469, 71, 9, 1, 1
Offset: 0
Examples
Row n=0: 1, 1, 1, 1, 1, 1, 1, ... see A000012. Row n=1: 1, 1, 2, 5, 14, 42, 132, ... see A000108. Row n=2: 1, 1, 3, 11, 45, 197, 903, ... see A001003. Row n=3: 1, 1, 4, 19, 100, 562, 3304, ... see A007564. Row n=4: 1, 1, 5, 29, 185, 1257, 8925, ... see A059231. Row n=5: 1, 1, 6, 41, 306, 2426, 20076, ... see A078009. Row n=6: 1, 1, 7, 55, 469, 4237, 39907, ... see A078018. Row n=7: 1, 1, 8, 71, 680, 6882, 72528, ... see A081178. Row n=8: 1, 1, 9, 89, 945, 10577, 123129, ... see A082147. Row n=9: 1, 1, 10, 109, 1270, 15562, 198100, ... see A082181. Row n=10: 1, 1, 11, 131, 161, 1661, 22101, ... see A082148. Row n=11: 1, 1, 12, 155, 2124, 30482, 453432, ... see A082173. ... - _Philippe Deléham_, Apr 03 2013 The first few rows of the antidiagonal triangle are: 1; 1, 1; 1, 1, 1; 1, 2, 1, 1; 1, 5, 3, 1, 1; 1, 14, 11, 4, 1, 1; 1, 42, 45, 19, 5, 1, 1; - _G. C. Greubel_, Feb 15 2021
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475
- H. Prodinger, On a functional difference equation of Runyon, Morrison, Carlitz, and Riordan, arXiv:math/0103149 [math.CO], 2001.
- H. Prodinger, On a functional difference equation of Runyon, Morrison, Carlitz, and Riordan, Séminaire Lotharingien de Combinatoire 46 (2001), Article B46a.
- L. Yang, S.-L. Yang, A relation between Schroder paths and Motzkin paths, Graphs Combinat. 36 (2020) 1489-1502, eq. (6).
Crossrefs
Programs
-
Magma
[Truncate(HypergeometricSeries(k-n, k-n+1, 2, k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 15 2021
-
Maple
gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1): for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n),x,12),polynom),x) od; # Peter Luschny, Nov 17 2014
-
Mathematica
(* First program *) Unprotect[Power]; Power[0 | 0, 0 | 0] = 1; Protect[Power]; Table[Function[n, Sum[Apply[Binomial[#1 + #2, #1] Binomial[#1, #2]/(#2 + 1) &, {k, j}]*n^j*(1 - n)^(k - j), {j, 0, k}]][m - k + 1] /. k_ /; k <= 0 -> 1, {m, -1, 9}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Aug 10 2017 Note: this code renders 0^0 = 1. To restore normal Power functionality: Unprotect[Power]; ClearAll[Power]; Protect[Power] *) (* Second program *) Table[Hypergeometric2F1[1-n+k, k-n, 2, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
Sage
flatten([[hypergeometric([k-n, k-n+1], [2], k).simplify_hypergeometric() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 15 2021
Formula
T(n, k) = Sum_{j>0} A001263(k, j)*n^(j-1); T(n, 0)=1.
T(n, k) = Sum_{j, 0<=j<=k} A088617(k, j)*n^j*(1-n)^(k-j).
The o.g.f. of row n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
G.f. of row n: 1/(1 - x/(1 - n*x/(1 - x/(1 - n*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
T(n, k) = Hypergeometric2F1([k-n, k-n+1], [2], k), as a number triangle. - G. C. Greubel, Feb 15 2021
Comments