cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008577 Crystal ball sequence for planar net 4.8.8.

Original entry on oeis.org

1, 4, 9, 17, 28, 41, 57, 76, 97, 121, 148, 177, 209, 244, 281, 321, 364, 409, 457, 508, 561, 617, 676, 737, 801, 868, 937, 1009, 1084, 1161, 1241, 1324, 1409, 1497, 1588, 1681, 1777, 1876, 1977, 2081, 2188, 2297, 2409, 2524, 2641, 2761, 2884, 3009, 3137, 3268
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 4*x + 9*x^2 + 17*x^3 + 28*x^4 + 41*x^5 + 67*x^6 + ... - _Michael Somos_, May 02 2020
		

Crossrefs

Partial sums of A008576.

Programs

Formula

G.f.: ((1+x)^2*(1+x^2)) / ((1-x)^3*(1+x+x^2)). - Ralf Stephan, Apr 24 2004
a(n) = 4*(n/3)*(n+1)+10/9+A099837(n+2)/9. - R. J. Mathar, Nov 20 2010
The above g.f. and formula were originally stated as conjectures, but I now have a proof. This also justifies the b-file. Details will be added later. - N. J. A. Sloane, Dec 29 2015
From Michael Somos, May 02 2020: (Start)
Euler transform of length 3 sequence [4, -1, 1, -1].
a(n) = a(-1-n) = floor((n^2+n+1)*4/3) for all n in Z.
a(n) - 2*a(n+1) + a(n+2) = A164359(n) unless n=0.
(End)