cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008612 Molien series of 2-dimensional representation of SL(2,3).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 5, 4, 4, 5, 5, 4, 6, 5, 5, 6, 6, 5, 7, 6, 6, 7, 7, 6, 8, 7, 7, 8, 8, 7, 9, 8, 8, 9, 9, 8, 10, 9, 9, 10, 10, 9, 11, 10, 10, 11, 11, 10, 12, 11, 11, 12, 12, 11, 13, 12, 12, 13, 13, 12, 14
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 2 ).

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.

Programs

  • Magma
    [2*Floor(n/3)-n/2+(3+(-1)^n)/4: n in [0..100]]; // Vincenzo Librandi, Oct 23 2014
    
  • Maple
    (1+x^12)/(1-x^6)/(1-x^8);seq(coeff(series(%,x,2*n+1),x,2*n), n=0..100);
  • Mathematica
    CoefficientList[Series[(1-x^2+x^4)/((1-x)^2*(1+x)*(1+x+x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 23 2014 *)
  • PARI
    Vec((1-x^2+x^4)/((1-x)^2*(1+x)*(1+x+x^2)) + O(x^100)) \\ Colin Barker, Jan 07 2014
    
  • Sage
    def A008612_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^6)/((1-x^3)*(1-x^4)) ).list()
    A008612_list(100) # G. C. Greubel, Feb 06 2020

Formula

From Colin Barker, Jan 07 2014: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5).
G.f.: (1-x^2+x^4) / ((1-x)^2*(1+x)*(1+x+x^2)). (End)
a(n) ~ n/6 (first difference is 6-periodic). - Ralf Stephan, Apr 29 2014
a(n) = 2*floor(n/3) -n/2 +(3+(-1)^n)/4. - Tani Akinari, Oct 23 2014
12*a(n) = 1 +2*n +3*(-1)^n +8*A057078(n). - R. J. Mathar, Jan 14 2021