A008612 Molien series of 2-dimensional representation of SL(2,3).
1, 0, 0, 1, 1, 0, 2, 1, 1, 2, 2, 1, 3, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 5, 4, 4, 5, 5, 4, 6, 5, 5, 6, 6, 5, 7, 6, 6, 7, 7, 6, 8, 7, 7, 8, 8, 7, 9, 8, 8, 9, 9, 8, 10, 9, 9, 10, 10, 9, 11, 10, 10, 11, 11, 10, 12, 11, 11, 12, 12, 11, 13, 12, 12, 13, 13, 12, 14
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
Programs
-
Magma
[2*Floor(n/3)-n/2+(3+(-1)^n)/4: n in [0..100]]; // Vincenzo Librandi, Oct 23 2014
-
Maple
(1+x^12)/(1-x^6)/(1-x^8);seq(coeff(series(%,x,2*n+1),x,2*n), n=0..100);
-
Mathematica
CoefficientList[Series[(1-x^2+x^4)/((1-x)^2*(1+x)*(1+x+x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 23 2014 *)
-
PARI
Vec((1-x^2+x^4)/((1-x)^2*(1+x)*(1+x+x^2)) + O(x^100)) \\ Colin Barker, Jan 07 2014
-
Sage
def A008612_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^6)/((1-x^3)*(1-x^4)) ).list() A008612_list(100) # G. C. Greubel, Feb 06 2020
Formula
From Colin Barker, Jan 07 2014: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5).
G.f.: (1-x^2+x^4) / ((1-x)^2*(1+x)*(1+x+x^2)). (End)
a(n) ~ n/6 (first difference is 6-periodic). - Ralf Stephan, Apr 29 2014
a(n) = 2*floor(n/3) -n/2 +(3+(-1)^n)/4. - Tani Akinari, Oct 23 2014
12*a(n) = 1 +2*n +3*(-1)^n +8*A057078(n). - R. J. Mathar, Jan 14 2021
Comments