A008617 Expansion of 1/((1-x^2)(1-x^7)).
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6
Offset: 0
References
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 214
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 0, 0, 1, 0, -1).
Programs
-
Mathematica
CoefficientList[Series[1 / ((1 - x^2) (1 - x^7)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 22 2013 *) LinearRecurrence[{0,1,0,0,0,0,1,0,-1},{1,0,1,0,1,0,1,1,1},80] (* Harvey P. Dale, May 18 2018 *)
Formula
a(n) = floor((2*n+21+7*(-1)^n)/28). - Tani Akinari, May 19 2014
Extensions
Typo in name fixed by Vincenzo Librandi, Jun 22 2013
Comments