cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008636 Number of partitions of n into at most 7 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1367, 1579, 1824, 2093, 2400, 2738, 3120, 3539, 4011, 4526, 5102, 5731, 6430, 7190, 8033, 8946, 9953, 11044, 12241, 13534, 14950, 16475, 18138
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Also, the number of partitions of n into parts <= 7: a(n) = A026820(n, 7). - Reinhard Zumkeller, Jan 21 2010
Counts unordered closed walks of weight n on a single vertex graph with 7 loops of weights 1, 2, 3, 4, 5, 6 and 7. - David Neil McGrath, Apr 11 2015
Number of different distributions of n+28 identical balls in 7 boxes as x,y,z,p,q,m,n where 0 < x < y < z < p < q < m < n. - Ece Uslu and Esin Becenen, Jan 11 2016

Examples

			There are 28 partitions of 9 into parts less than or equal to 7. These are (72)(711)(63)(621)(6111)(54)(531)(522)(5211)(51111)(441)(432)(4311)(4221)(42111)(411111)(333)(3321)(33111)(3222)(32211)(321111)(3111111)(22221)(222111)(2211111)(21111111)(111111111). - _David Neil McGrath_, Apr 11 2015
a(3) = 3, i.e., {1,2,3,4,5,7,9}, {1,2,3,4,6,7,8}, {1,2,3,4,5,6,10}. Number of different distributions of 31 identical balls in 7 boxes as x,y,z,p,q,m,n where 0 < x < y < z < p < q < m < n. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Programs

  • Maple
    with(combstruct):ZL8:=[S,{S=Set(Cycle(Z,card<8))}, unlabeled]: seq(count(ZL8,size=n),n=0..48); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=7)},unlabelled]: seq(combstruct[count](B, size=n), n=0..48); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 7} ], {x, 0, 60} ], x ]
  • PARI
    {a(n)=(2*n^6+168*n^5+5530*n^4+90160*n^3+754299*n^2+(2988020+44800*(1-n%3))*n+6654375+1575*(3*n^2+84*n+511)*(-1)^n)\7257600}; \\ Tani Akinari, May 27 2014

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
a(n) = A008284(n+7, 7), n >= 0.
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-8) + a(n-10) + a(n-11) + 2*a(n-12) - 2*a(n-16) - a(n-17) - a(n-18) + a(n-20) + a(n-21) + a(n-23) - a(n-26) - a(n-27) + a(n-28). - David Neil McGrath, Apr 11 2015
a(n+7) = a(n) + A001402(n). - Ece Uslu, Esin Becenen, Jan 11 2016
a(n) = A026813(n+7). - R. J. Mathar, Feb 13 2019
From Vladimír Modrák, Jul 30 2022: (Start)
a(n) = Sum_{p=0..floor(n/7)} Sum_{m=0..floor(n/6)} Sum_{k=0..floor(n/5)} Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0, n + 1 - 3*i - 4*j - 5*k - 6*m - 7*p))/2).
a(n) = Sum_{m=0..floor(n/7)} Sum_{k=0..floor(n/6)} Sum_{j=0..floor(n/5)} Sum_{i=0..floor(n/4)} floor(((max(0, n + 3 - 4*i - 5*j - 6*k - 7*m))^2+4)/12). (End)

Extensions

More terms from Robert G. Wilson v, Dec 11 2000