cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008637 Number of partitions of n into at most 8 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 70, 89, 116, 146, 186, 230, 288, 352, 434, 525, 638, 764, 919, 1090, 1297, 1527, 1801, 2104, 2462, 2857, 3319, 3828, 4417, 5066, 5812, 6630, 7564, 8588, 9749, 11018, 12450, 14012, 15765, 17674, 19805, 22122
Offset: 0

Views

Author

Keywords

Comments

For n>7: also number of partitions of n into parts <= 8: a(n)=A026820(n,8). - Reinhard Zumkeller, Jan 21 2010
Molien series for finite Coxeter group of type A_8.
Number of different distributions of n+36 identical balls in 8 boxes as x,y,z,p,q,m,n,h where 0 < x < y < z < p < q < m < n < h. - Ece Uslu and Esin Becenen, Jan 11 2016

Examples

			There are a(9)=29 partitions of 9 into parts less than or equal to 8. These are (81)(72)(711)(63)(621)(6111)(54)(531)(522)(5211)(51111)(441)(432)(4311)(4221)(42111)(411111)(333)(3321)(33111)(3222)(32211)(321111)(3111111)(22221)(222111)(2211111)(21111111)(111111111). - _David Neil McGrath_, Apr 14 2015
a(3) = 3, i.e., {1,2,3,4,5,7,8,9}, {1,2,3,4,5,6,8,10}, {1,2,3,4,5,6,7,11}: number of different distributions of 39 identical balls in 8 boxes as x,y,z,p,q,m,n,h where 0 < x < y < z < p < q < m < n < h. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • A. Cayley, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 415.
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.

Crossrefs

Cf. A008284.
Strictly different from A008631, although they have similar descriptions.

Programs

  • Maple
    1/(1-x)/(1-x^2)/(1-x^3)/(1-x^4)/(1-x^5)/(1-x^6)/(1-x^7)/(1-x^8)
    with(combstruct):ZL9:=[S,{S=Set(Cycle(Z,card<9))}, unlabeled]:seq(count(ZL9,size=n),n=0..47); # Zerinvary Lajos, Sep 24 2007
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=8)},unlabelled]: seq(combstruct[count](B, size=n), n=0..47); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/ Product[ 1 - x^n, {n, 1, 8} ], {x, 0, 60} ], x ]
  • Maxima
    a(n):=floor((-1)^n*((n+1)*(-1)^floor((n+2)/3)+(2*n+3)*(-1)^floor((n+1)/3)+(n+2)*(-1)^floor(n/3))/972+(n+2)*((-1)^n+1)*(-1)^(n/2)/512+(n+18)*(6*n^6+648*n^5+27018*n^4+545616*n^3+5481213*n^2+25163028*n+39226571)/1219276800+(n+1)*(n^2+53*n+826)*(-1)^n/36864+1/2); /* Tani Akinari, Oct 25 2012 */

Formula

G.f.: 1/((1-t)*(1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)). - N. J. A. Sloane, Jan 09 2016
a(n) = A008284(n+8, 8), n >= 0.
a(n) = floor((-1)^n*((n+1)*(-1)^(floor((n+2)/3)) + (2*n+3)*(-1)^(floor((n+1)/3)) + (n+2)*(-1)^(floor(n/3)))/972 + (n+2)*((-1)^n+1)*(-1)^(n/2)/512 + (n+18)*(6*n^6 + 648*n^5 + 27018*n^4 + 545616*n^3 + 5481213*n^2 + 25163028*n + 39226571)/1219276800 + (n+1)*(n^2+53*n+826)*(-1)^n/36864+1/2). (See link.) - Tani Akinari, Oct 26 2012
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-7) - a(n-9) + a(n-11) + 2*a(n-12) + a(n-13) + a(n-15) - a(n-16) - a(n-17) - 2*a(n-18) - a(n-19) - a(n-20) + a(n-21) + a(n-23) + 2*a(n-24) + a(n-25) - a(n-27) - a(n-29) - a(n-31) + a(n-34) + a(n-35) - a(n-36). - David Neil McGrath, Apr 14 2015
a(n+8) = a(n) + A008636(n). - Ece Uslu, Esin Becenen, Jan 11 2016
From Vladimír Modrák, Jul 30 2022: (Start)
a(n) = Sum_{i_1=0..floor(n/3)} Sum_{i_2=0..floor(n/4)} Sum_{i_3=0..floor(n/5)} Sum_{i_4=0..floor(n/6)} Sum_{i_5=0..floor(n/7)} Sum_{i_6=0..floor(n/8)} ceiling((max(0, n + 1 - 3*i_1 - 4*i_2 - 5*i_3 - 6*i_4 - 7*i_5 - 8*i_6))/2).
a(n) = Sum_{i_1=0..floor(n/4)} Sum_{i_2=0..floor(n/5)} Sum_{i_3=0..floor(n/6)} Sum_{i_4=0..floor(n/7)} Sum_{i_5=0..floor(n/8)} floor(((max(0, n + 3 - 4*i_1 - 5*i_2 - 6*i_3 - 7*i_4 - 8*i_5))^2+4)/12). (End)

Extensions

More terms from Robert G. Wilson v, Dec 11 2000