cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008649 Molien series of 3 X 3 upper triangular matrices over GF( 3 ).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 9, 9, 9, 12, 12, 12, 15, 15, 15, 18, 18, 18, 22, 22, 22, 26, 26, 26, 30, 30, 30, 35, 35, 35, 40, 40, 40, 45, 45, 45, 51, 51, 51, 57, 57, 57, 63, 63, 63, 70, 70, 70, 77, 77, 77, 84, 84, 84, 92, 92, 92, 100, 100, 100
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 3 or 9. - Reinhard Zumkeller, Aug 12 2011

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^3)*(1-x^9)) )); // G. C. Greubel, Sep 06 2019
    
  • Maple
    1/((1-x)*(1-x^3)*(1-x^9)): seq(coeff(series(%,x,n+1),x,n), n=0..70);
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^3)*(1-x^9)), {x,0,70}], x] (* G. C. Greubel, Sep 06 2019 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^3)*(1-x^9))) \\ G. C. Greubel, Sep 06 2019
    
  • Sage
    def A008649_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x)*(1-x^3)*(1-x^9))).list()
    A008649_list(70) # G. C. Greubel, Sep 06 2019

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^9)).
a(n) = floor((6*(floor(n/3) +1)*(3*floor(n/3) -n +1) +n^2 +13*n +58)/54). - Tani Akinari, Jul 12 2013