cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008652 Molien series for group of 3 X 3 upper triangular matrices over GF( 4 ).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 15, 15, 15, 15, 18, 18, 18, 18, 21, 21, 21, 21, 24, 24, 24, 24, 28, 28, 28, 28, 32, 32, 32, 32, 36, 36, 36, 36, 40, 40
Offset: 0

Views

Author

Keywords

Comments

Partitions into parts 1, 4, and 16. - Joerg Arndt, Apr 29 2014

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.

Programs

  • GAP
    List([0..65], n-> Int((Int(n/4)+3)^2/8) ); # G. C. Greubel, Sep 07 2019~
  • Magma
    [Floor((Floor(n/4)+3)^2/8): n in [0..65]]; // G. C. Greubel, Sep 07 2019
    
  • Maple
    seq(coeff(series(1/((1-x)*(1-x^4)*(1-x^16)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 07 2019
  • Mathematica
    Table[Floor[(Floor[n/4] + 3)^2/8], {n, 0, 61}] (* or *) Table[Floor[(n + 3)^2/8], {n, 0, 15}, {4}] // Flatten (* Jean-François Alcover, Jul 17 2013, updated Feb 26 2016 *)
    LinearRecurrence[{1,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1}, {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,6,6,6,6,8}, 70] (* Harvey P. Dale, Jan 30 2018 *)
  • PARI
    a(n)=(n\4 + 3)^2\8 \\ Charles R Greathouse IV, Feb 10 2017
    
  • Sage
    [floor((floor(n/4)+3)^2/8) for n in (0..65)] # G. C. Greubel, Sep 07 2019
    

Formula

G.f.: 1/((1-x)*(1-x^4)*(1-x^16)).
G.f.: 1/((1+x)^2*(1-x)^3*(1+x^2)^2*(1+x^4)*(1+x^8)). - Bruno Berselli, Jul 25 2013
a(n) ~ 1/128*n^2. - Ralf Stephan, Apr 29 2014