cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008669 Molien series for 4-dimensional complex reflection group of order 7680 (in powers of x^4).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 34, 40, 47, 54, 62, 71, 80, 91, 102, 114, 127, 141, 156, 172, 189, 207, 226, 247, 268, 291, 315, 340, 367, 395, 424, 455, 487, 521, 556, 593, 631, 671, 713, 756, 801, 848, 896, 947, 999, 1053, 1109, 1167, 1227, 1289
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n into parts 1, 2, 3 and 5. - David Neil McGrath, Sep 15 2014

Examples

			There are 6 partitions of 5 into parts 1,2,3 and 5. These are (5)(32)(311)(221)(2111)(11111). - _David Neil McGrath_, Sep 15 2014
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 120, D(n;1,2,3,5).
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 29).

Programs

  • Magma
    [Round((n+3)*(2*n+9)*(n+9)/360): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0..60); # modified by G. C. Greubel, Sep 08 2019
  • Mathematica
    LinearRecurrence[{1,1,0,-1,0,0,-1,0,1,1,-1}, {1,1,2,3,4,6,8,10,13,16, 20}, 60] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=round((n+3)*(2*n+9)*(n+9)/360)
    
  • Sage
    [round((n+3)*(2*n+9)*(n+9)/360) for n in (0..60)] # G. C. Greubel, Sep 08 2019

Formula

a(n) = round((n+3)*(2*n+9)*(n+9)/360).
G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^5)).
a(n) = -a(-11-n).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-7) + a(n-9) + a(n-10) - a(n-11). - David Neil McGrath, Sep 15 2014