A008676 Expansion of 1/((1-x^3)*(1-x^5)).
1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 217
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,0,-1).
Crossrefs
Cf. A103221.
Programs
-
GAP
a:=[1,0,0,1,0,1,1,0];; for n in [9..100] do a[n]:=a[n-3]+a[n-5]-a[n-8]; od; a; # G. C. Greubel, Sep 08 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^3)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019 -
Maple
a := proc (n) option remember; if n < 0 then return 0 elif n = 0 then return 1 else return a(n-3)+a(n-5)-a(n-8) end if end proc
-
Mathematica
CoefficientList[Series[1/((1-x^3)(1-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
-
PARI
Vec(O(x^99)+1/(1-x^3)/(1-x^5)) \\ Charles R Greathouse IV, Jun 20 2011
-
Sage
def A008676_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/((1-x^3)*(1-x^5))).list() A008676_list(100) # G. C. Greubel, Sep 08 2019
Formula
G.f.: 1/( (1-x^3) * (1-x^5) ).
a(n) = a(n-3) + a(n-5) - a(n-8), a(0)=a(3)=a(5)=a(6)=1, a(1)=a(2)=a(4) =a(6)=a(7)=0.
a(n) = floor((2*n+5)/5) - floor((n+2)/3). - Tani Akinari, Aug 07 2013
Extensions
Edited by Andrew Baxter, Jun 20 2011
Typo in name fixed by Vincenzo Librandi, Jun 23 2013
Comments