cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008676 Expansion of 1/((1-x^3)*(1-x^5)).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 6, 5, 5
Offset: 0

Views

Author

Keywords

Comments

a(n) gives the number of partitions of n using only the parts 3 and 5. e.g. a(25)=2: 5+5+5+5+5 and 5+5+3+3+3+3+3+3. - Andrew Baxter, Jun 20 2011
a(n) gives the number of partitions of n+8 involving both a 3 and a 5. e.g. a(25)=2 and we may write 33 as 5+5+5+5+5+5+3 and 5+5+5+3+3+3+3+3+3. 11*3 doesn't count as no 5 is involved. - Jon Perry, Jul 03 2004
Conjecture: a(n) = Floor(2*(n + 3)/3) - Floor(3*(n + 3)/5). - John W. Layman, Sep 23 2009
Also, it appears that a(n) gives the number of distinct multisets of n-1 integers, each of which is -2, +3, or +4, such that the sum of the members of each multiset is 2. E.g., for n=5, the multiset {-2,-2,3,3}, and no others, of n-1=4 members, sums to 2, so a(5)=1. - John W. Layman, Sep 23 2009
Appears to be the number of ordered triples summing to n such that 2x = 3y + 4z, ranked by A357489. An unordered version appears to be A357849, ranked by A358102. - Gus Wiseman, Nov 04 2022

Crossrefs

Cf. A103221.

Programs

  • GAP
    a:=[1,0,0,1,0,1,1,0];; for n in [9..100] do a[n]:=a[n-3]+a[n-5]-a[n-8]; od; a; # G. C. Greubel, Sep 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^3)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    a := proc (n) option remember; if n < 0 then return 0 elif n = 0 then return 1 else return a(n-3)+a(n-5)-a(n-8) end if end proc
  • Mathematica
    CoefficientList[Series[1/((1-x^3)(1-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 23 2013 *)
  • PARI
    Vec(O(x^99)+1/(1-x^3)/(1-x^5)) \\ Charles R Greathouse IV, Jun 20 2011
    
  • Sage
    def A008676_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^3)*(1-x^5))).list()
    A008676_list(100) # G. C. Greubel, Sep 08 2019
    

Formula

G.f.: 1/( (1-x^3) * (1-x^5) ).
a(n) = a(n-3) + a(n-5) - a(n-8), a(0)=a(3)=a(5)=a(6)=1, a(1)=a(2)=a(4) =a(6)=a(7)=0.
a(n) = floor((2*n+5)/5) - floor((n+2)/3). - Tani Akinari, Aug 07 2013

Extensions

Edited by Andrew Baxter, Jun 20 2011
Typo in name fixed by Vincenzo Librandi, Jun 23 2013