Original entry on oeis.org
1, 144, 193104, 16809408, 397822032, 4630076640, 34416785088, 187487524224, 814891939920, 2975535123408, 9486534607200, 27053022904128, 70486183583424, 169931012132448, 384163644219264, 820166796086400
Offset: 0
Equal to the theta series of D_4^6,
A008700.
-
terms = 16; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 2/3 E4[q]^3 + 1/3 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 05 2000
A008699
Theta series of Niemeier lattice of type A_6^4.
Original entry on oeis.org
1, 168, 192528, 16815456, 397786704, 4630192560, 34416639936, 187487122368, 814893967440, 2975532395976, 9486531825120, 27053035734816, 70486174680768, 169930998266736, 384163653863808
Offset: 0
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
-
terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 49/72 E4[q]^3 + 23/72 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
A008701
Theta series of Niemeier lattice of type A_4^6.
Original entry on oeis.org
1, 120, 193680, 16803360, 397857360, 4629960720, 34416930240, 187487926080, 814889912400, 2975537850840, 9486537389280, 27053010073440, 70486192486080, 169931025998160, 384163634574720
Offset: 0
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 407.
-
terms = 15; E4[q_] := 1 + 240 Sum[DivisorSigma[3, n]*q^(2 n), {n, 1, terms}]; E6[q_] := 1 - 504 Sum[DivisorSigma[5, n]*q^(2 n), {n, 1, terms}]; s = 47/72 E4[q]^3 + 25/72 E6[q]^2 + O[q]^(3 terms); Partition[ CoefficientList[s, q], 2][[All, 1]][[1 ;; terms]] (* Jean-François Alcover, Jul 06 2017 *)
A055762
Jacobi form of weight 12 and index 1 for Niemeier lattice of type A_5^4 D_4 or D_4^6.
Original entry on oeis.org
1, 0, 0, 8, 126, 0, 0, 31680, 129492, 0, 0, 3684312, 9181784, 0, 0, 95595072, 188204958, 0, 0, 1143217944, 1959861960, 0, 0, 8506517184, 13292577672, 0, 0, 45761541536, 67074486336, 0, 0, 195392621952, 272568215700, 0, 0
Offset: 0
Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 12 2000
- Eichler and Zagier, The Theory of Jacobi Forms, Birkhauser, 1985.
Showing 1-4 of 4 results.
Comments