cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008720 Molien series for 3-dimensional group [2,5] = *225.

Original entry on oeis.org

1, 0, 2, 0, 3, 1, 4, 2, 5, 3, 7, 4, 9, 5, 11, 7, 13, 9, 15, 11, 18, 13, 21, 15, 24, 18, 27, 21, 30, 24, 34, 27, 38, 30, 42, 34, 46, 38, 50, 42, 55, 46, 60, 50, 65, 55, 70, 60, 75, 65, 81, 70, 87, 75, 93, 81, 99, 87, 105, 93, 112, 99, 119, 105, 126, 112, 133, 119, 140, 126, 148, 133, 156
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of partitions of n into parts 2 and 5 where there are two kinds of parts 2. - Hoang Xuan Thanh, Jun 20 2025

Programs

  • GAP
    a:=[1,0,2,0,3,1,4,2,5];; for n in [10..80] do a[n]:=2*a[n-2]-a[n-4] +a[n-5]-2*a[n-7]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x^2)^2*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0 .. 80); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    LinearRecurrence[{0,2,0,-1,1,0,-2,0,1}, {1,0,2,0,3,1,4,2,5}, 80] (* Harvey P. Dale, Dec 10 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^5))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008720_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^2)^2*(1-x^5))).list()
    A008720_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

a(n) = floor((n^2 + n*(9+5*(-1)^n) + 23*(-1)^n + 26)/40). - Hoang Xuan Thanh, Jun 20 2025

Extensions

Terms a(65) onward added by G. C. Greubel, Sep 09 2019