A008720 Molien series for 3-dimensional group [2,5] = *225.
1, 0, 2, 0, 3, 1, 4, 2, 5, 3, 7, 4, 9, 5, 11, 7, 13, 9, 15, 11, 18, 13, 21, 15, 24, 18, 27, 21, 30, 24, 34, 27, 38, 30, 42, 34, 46, 38, 50, 42, 55, 46, 60, 50, 65, 55, 70, 60, 75, 65, 81, 70, 87, 75, 93, 81, 99, 87, 105, 93, 112, 99, 119, 105, 126, 112, 133, 119, 140, 126, 148, 133, 156
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 223
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1,1,0,-2,0,1).
Programs
-
GAP
a:=[1,0,2,0,3,1,4,2,5];; for n in [10..80] do a[n]:=2*a[n-2]-a[n-4] +a[n-5]-2*a[n-7]+a[n-9]; od; a; # G. C. Greubel, Sep 09 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^5)) )); // G. C. Greubel, Sep 09 2019 -
Maple
1/((1-x^2)^2*(1-x^5)); seq(coeff(series(%, x, n+1), x, n), n = 0 .. 80); # modified by G. C. Greubel, Sep 09 2019
-
Mathematica
LinearRecurrence[{0,2,0,-1,1,0,-2,0,1}, {1,0,2,0,3,1,4,2,5}, 80] (* Harvey P. Dale, Dec 10 2015 *)
-
PARI
my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^5))) \\ G. C. Greubel, Sep 09 2019
-
Sage
def A008720_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P(1/((1-x^2)^2*(1-x^5))).list() A008720_list(80) # G. C. Greubel, Sep 09 2019
Formula
a(n) = floor((n^2 + n*(9+5*(-1)^n) + 23*(-1)^n + 26)/40). - Hoang Xuan Thanh, Jun 20 2025
Extensions
Terms a(65) onward added by G. C. Greubel, Sep 09 2019
Comments