cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008722 Molien series for 3-dimensional group [2,9] = *229.

Original entry on oeis.org

1, 0, 2, 0, 3, 0, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, 19, 11, 21, 13, 23, 15, 25, 17, 27, 19, 30, 21, 33, 23, 36, 25, 39, 27, 42, 30, 45, 33, 48, 36, 51, 39, 54, 42, 58, 45, 62, 48, 66, 51, 70, 54, 74, 58, 78, 62, 82, 66, 86, 70, 90, 74, 95, 78, 100, 82
Offset: 0

Views

Author

Keywords

Comments

It appears that a(n) is the number of (n+11)-digit fixed points under the base-7 Kaprekar map A165071 (see A165075 for the list of fixed points). - Joseph Myers, Sep 04 2009
a(n) is the number of partitions of n into parts 2 and 9 where there are two kinds of parts 2. - Hoang Xuan Thanh, Jun 20 2025

Programs

  • GAP
    a:=[1,0,2,0,3,0,4,0,5,1,6,2,7];; for n in [14..80] do a[n]:= 2*a[n-2] -a[n-4]+a[n-9]-2*a[n-11]+a[n-13]; od; a; # G. C. Greubel, Sep 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)^2*(1-x^9)) )); // G. C. Greubel, Sep 09 2019
    
  • Maple
    1/((1-x^2)^2*(1-x^9)); seq(coeff(series(%, x, n+1), x, n), n = 0..80); # modified by G. C. Greubel, Sep 09 2019
  • Mathematica
    LinearRecurrence[{0,2,0,-1,0,0,0,0,1,0,-2,0,1}, {1,0,2,0,3,0,4,0,5,1,6, 2,7}, 80] (* Ray Chandler, Jul 15 2015 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x^2)^2*(1-x^9))) \\ G. C. Greubel, Sep 09 2019
    
  • Sage
    def A008722_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^2)^2*(1-x^9)) ).list()
    A008722_list(80) # G. C. Greubel, Sep 09 2019
    

Formula

G.f.: 1/((1-x^2)^2*(1-x^9)).
a(n) = 2*a(n-2) - a(n-4) + a(n-9) - 2*a(n-11) + a(n-13). - R. J. Mathar, Dec 18 2014
a(n) = floor((n^2 + n*(13+9*(-1)^n) + 62*(-1)^n + 75)/72) - [(n mod 9)=7], where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 20 2025