cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008738 a(n) = floor((n^2 + 1)/5).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 7, 10, 13, 16, 20, 24, 29, 34, 39, 45, 51, 58, 65, 72, 80, 88, 97, 106, 115, 125, 135, 146, 157, 168, 180, 192, 205, 218, 231, 245, 259, 274, 289, 304, 320, 336, 353, 370, 387, 405, 423, 442, 461, 480, 500, 520, 541, 562, 583, 605, 627, 650, 673
Offset: 0

Views

Author

Keywords

Comments

Without initial zeros, Molien series for 3-dimensional group [2+,n] = 2*(n/2).

Crossrefs

Cf. A011858. Partial sums of A288156.

Programs

  • GAP
    List([0..60], n-> Int((n^2 + 1)/5)); # G. C. Greubel, Aug 03 2019
  • Magma
    [(n^2+1) div 5: n in [0..60]]; // Bruno Berselli, Oct 28 2011
    
  • Mathematica
    Floor[(Range[0,60]^2 + 1)/5] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    a(n)=(n^2+1)\5;
    
  • Sage
    [floor((n^2+1)/5) for n in (0..60)] # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: x^2*(1+x^3)/((1-x)^2*(1-x^5)) = x^2*(1+x)*(1-x+x^2)/( (1-x)^3 *(1+x+x^2+x^3+x^4) ).
a(n+2)= A249020(n) + A249020(n-1). - R. J. Mathar, Aug 11 2021

Extensions

More terms from Philip Mummert (s1280900(AT)cedarville.edu), May 10 2000