A147874
a(n) = (5*n-7)*(n-1).
Original entry on oeis.org
0, 3, 16, 39, 72, 115, 168, 231, 304, 387, 480, 583, 696, 819, 952, 1095, 1248, 1411, 1584, 1767, 1960, 2163, 2376, 2599, 2832, 3075, 3328, 3591, 3864, 4147, 4440, 4743, 5056, 5379, 5712, 6055, 6408, 6771, 7144, 7527, 7920, 8323, 8736, 9159, 9592, 10035
Offset: 1
-
List([1..50], n-> (5*n-7)*(n-1)); # G. C. Greubel, Jul 30 2019
-
[ 0 ] cat [ &+[ 10*k+3: k in [0..n-1] ]: n in [1..50] ]; // Klaus Brockhaus, Nov 17 2008
-
[ 5*n^2-2*n: n in [0..50] ];
-
s=0;lst={s};Do[s+=n++ +3;AppendTo[lst,s],{n,0,6!,10}];lst
Table[5n^2-12n+7,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{0,3,16},50] (* or *) PolygonalNumber[12,Range[0,100,2]]/4 (* Harvey P. Dale, Aug 08 2021 *)
-
{m=50; a=7; for(n=0, m, print1(a=a+10*(n-1)+3, ","))} \\ Klaus Brockhaus, Nov 17 2008
-
[(5*n-7)*(n-1) for n in (1..50)] # G. C. Greubel, Jul 30 2019
A265667
Permutation of nonnegative integers: a(n) = n + floor(n/3)*(-1)^(n mod 3).
Original entry on oeis.org
0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, 13, 26, 28, 15, 30, 32, 17, 34, 36, 19, 38, 40, 21, 42, 44, 23, 46, 48, 25, 50, 52, 27, 54, 56, 29, 58, 60, 31, 62, 64, 33, 66, 68, 35, 70, 72, 37, 74, 76, 39, 78, 80, 41, 82, 84, 43, 86, 88, 45
Offset: 0
-------------------------------------------------------------------------
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
+ + + + + + + + + + + + + + + + + + +
0, 0, 0, 1, -1, 1, 2, -2, 2, 3, -3, 3, 4, -4, 4, 5, -5, 5, 6, ...
-------------------------------------------------------------------------
0, 1, 2, 4, 3, 6, 8, 5, 10, 12, 7, 14, 16, 9, 18, 20, 11, 22, 24, ...
-------------------------------------------------------------------------
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Peter Lynch and Michael Mackey, Parity and Partition of the Rational Numbers, arXiv:2205.00565 [math.NT], 2022. See set F p. 4.
- Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
- Index entries for permutations of the positive (or nonnegative) integers.
Cf.
A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf.
A265888: n+floor(n/4)*(-1)^(n mod 4).
Cf.
A265734: n+floor(n/5)*(-1)^(n mod 5).
-
[n+Floor(n/3)*(-1)^(n mod 3): n in [0..70]];
-
Table[n + Floor[n/3] (-1)^Mod[n, 3], {n, 0, 70}]
-
[n+floor(n/3)*(-1)^mod(n,3) for n in (0..70)]
A173690
Partial sums of round(n^2/5).
Original entry on oeis.org
0, 0, 1, 3, 6, 11, 18, 28, 41, 57, 77, 101, 130, 164, 203, 248, 299, 357, 422, 494, 574, 662, 759, 865, 980, 1105, 1240, 1386, 1543, 1711, 1891, 2083, 2288, 2506, 2737, 2982, 3241, 3515, 3804, 4108, 4428, 4764, 5117, 5487, 5874, 6279, 6702, 7144, 7605, 8085, 8585
Offset: 0
a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1).
-
A173690 := proc(n) add( round(i^2/5),i=0..n) ; end proc: # R. J. Mathar, Jan 10 2011
-
Accumulate[Round[Range[0,50]^2/5]] (* or *) LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{0,0,1,3,6,11,18,28},60] (* Harvey P. Dale, Mar 16 2022 *)
-
a(n)=(2*n^3+3*n^2+n+6)\30 \\ Charles R Greathouse IV, May 30 2011
Showing 1-3 of 3 results.
Comments