cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008740 Molien series for 3-dimensional group [2+,n] = 2*(n/2).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 32, 36, 40, 44, 49, 54, 59, 64, 69, 75, 81, 87, 93, 100, 107, 114, 121, 128, 136, 144, 152, 160, 169, 178, 187, 196, 205, 215, 225, 235, 245, 256, 267, 278, 289, 300, 312, 324, 336, 348, 361, 374, 387, 400, 413, 427, 441, 455, 469, 484
Offset: 0

Views

Author

Keywords

Programs

  • GAP
    List([0..70], n-> Int(((n+3)^2+3)/9)); # G. C. Greubel, Aug 03 2019
  • Magma
    [Floor((n+3)^2+3)/9: n in [0..70]]; // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^5)/((1-x)^2(1-x^9)),{x,0,70}],x] (* Harvey P. Dale, Aug 27 2011 *)
    Floor[((Range[0,70]+3)^2 + 3)/9] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(70, n, n--; ((n+3)^2+3)\9) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [floor((n+3)^2+3)/9 for n in (0..70)] # G. C. Greubel, Aug 03 2019
    

Formula

G.f.: (1+x^5)/((1-x)^2*(1-x^9)).
Nearest integer to (n+3)^2/9. [Corrected by Gerald Hillier, Dec 24 2017]
a(n) = a(n-4) + n. - Paul Barry, Jul 14 2004
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11).
a(n) = floor((n^2 + 6*n + 12)/9). - Tani Akinari, Aug 19 2013