cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008751 Expansion of (1+x^8)/((1-x)*(1-x^2)*(1-x^3)).

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 11, 13, 16, 19, 23, 26, 31, 35, 40, 45, 51, 56, 63, 69, 76, 83, 91, 98, 107, 115, 124, 133, 143, 152, 163, 173, 184, 195, 207, 218, 231, 243, 256, 269, 283, 296, 311, 325, 340, 355
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([1,1,2], List([3..50], n-> Int(((n-1)^2 +17)/6))); # G. C. Greubel, Aug 04 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^8)/((1-x)*(1-x^2)*(1-x^3)) )); // G. C. Greubel, Aug 04 2019
    
  • Mathematica
    CoefficientList[Series[(1+x^8)/((1-x)(1-x^2)(1-x^3)),{x,0,50}],x] (* Vincenzo Librandi, Feb 25 2012 *)
    Join[{1,1,2}, Floor[((Range[3, 50] -1)^2 +17)/6]] (* G. C. Greubel, Aug 04 2019 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+x^8)/((1-x)*(1-x^2)*(1-x^3))) \\ G. C. Greubel, Aug 04 2019
    
  • Sage
    ((1+x^8)/((1-x)*(1-x^2)*(1-x^3))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Aug 04 2019
    

Formula

From Henry Bottomley, Sep 05 2000: (Start)
a(n) = floor((n^2 - 2*n + 18)/6) for n>2.
a(n) = a(n-2) + a(n-3) - a(n-5) + 2.
a(n) = A001399(n) + A001399(n-8).
a(n) = A008747(n-2) + 2 for n>2. (End)