A008764 Number of 3 X 3 symmetric stochastic matrices under row and column permutations.
1, 1, 2, 4, 6, 8, 12, 16, 21, 27, 34, 42, 52, 62, 74, 88, 103, 119, 138, 158, 180, 204, 230, 258, 289, 321, 356, 394, 434, 476, 522, 570, 621, 675, 732, 792, 856, 922, 992, 1066, 1143, 1223, 1308, 1396, 1488, 1584, 1684, 1788, 1897, 2009, 2126, 2248, 2374, 2504
Offset: 0
Keywords
Examples
There are 6 nonisomorphic symmetric 3 X 3 matrices with row and column sums 4: [0 0 4] [0 1 3] [0 1 3] [0 2 2] [0 2 2] [1 1 2] [0 4 0] [1 2 1] [1 3 0] [2 0 2] [2 1 1] [1 2 1] [4 0 0] [3 1 0] [3 0 1] [2 2 0] [2 1 1] [2 1 1]
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-1,-1,1,-1,2,-1).
Crossrefs
Cf. A019298.
Programs
-
GAP
a:=[1,1,2,4,6,8,12,16,21];; for n in [10..60] do a[n]:=2*a[n-1]-a[n-2]+a[n-3]-a[n-4]-a[n-5]+a[n-6]-a[n-7]+2*a[n-8]-a[n-9]; od; a; # G. C. Greubel, Sep 10 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, Sep 10 2019 -
Maple
seq(coeff(series((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)), x, n+1), x, n), n = 0 .. 60); # G. C. Greubel, Sep 10 2019
-
Mathematica
LinearRecurrence[{2,-1,1,-1,-1,1,-1,2,-1}, {1,1,2,4,6,8,12,16,21}, 60] (* G. C. Greubel, Sep 10 2019 *)
-
PARI
my(x='x+O('x^60)); Vec((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))) \\ G. C. Greubel, Sep 10 2019
-
Sage
def A008764_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))).list() A008764_list(60) # G. C. Greubel, Sep 10 2019
Formula
Expansion of (1+x^3)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) = (1-x+x^2)/( (1+x)*(1+x+x^2)*(1+x^2)*(1-x)^4).
Extensions
Better description and more terms from Vladeta Jovovic, Feb 06 2000