cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008779 Number of n-dimensional partitions of 5.

Original entry on oeis.org

1, 7, 24, 59, 120, 216, 357, 554, 819, 1165, 1606, 2157, 2834, 3654, 4635, 5796, 7157, 8739, 10564, 12655, 15036, 17732, 20769, 24174, 27975, 32201, 36882, 42049, 47734, 53970, 60791, 68232, 76329, 85119, 94640, 104931, 116032, 127984, 140829, 154610, 169371
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of (n+8)-bit binary sequences with exactly 8 1's none of which is isolated. - David Callan, Jul 15 2004
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Binomial transform of [1,6,11,7,1,0,0,0,...], the 5th row of A116672. - R. J. Mathar, Jul 18 2017

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. '76, p. 190.

Crossrefs

Programs

  • GAP
    List([0..45], n-> (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24); # G. C. Greubel, Sep 11 2019
  • Magma
    [(n+1)*(n^3+21*n^2+38*n+24)/24: n in [0..45]]; // Vincenzo Librandi, May 21 2015
    
  • Magma
    I:=[1,7,24,59,120]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, May 21 2015
    
  • Maple
    seq(1+6*n+11*binomial(n,2)+7*binomial(n,3)+binomial(n,4), n=0..45);
  • Mathematica
    CoefficientList[Series[(1+2*x-x^2-x^3)/(1-x)^5, {x,0,45}], x] (* Vincenzo Librandi, May 21 2015 *)
    LinearRecurrence[{5,-10,10,-5,1}, {1,7,24,59,120}, 46] (* G. C. Greubel, Sep 11 2019 *)
  • PARI
    Vec((-1+x^3+x^2-2*x)/(x-1)^5 + O(x^45)) \\ Altug Alkan, Jan 07 2016
    
  • Sage
    [(n+1)*(n^3 + 21*n^2 + 38*n + 24)/24 for n in (0..45)] # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1 +2*x -x^2 -x^3)/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009
a(n) = (n+1)*(n^3 + 21*n^2 + 38*n + 24)/24. - M. F. Hasler, Sep 15 2009
a(n) = 5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). - Vincenzo Librandi, May 21 2015
E.g.f.: (24 + 144*x + 132*x^2 + 28*x^3 + x^4)*exp(x)/24. - G. C. Greubel, Sep 11 2019

Extensions

More terms from Vincenzo Librandi, May 21 2015