cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008796 Molien series for 3-dimensional group [2,3]+ = 223; also for group H_{1,2} of order 384.

Original entry on oeis.org

1, 0, 2, 1, 4, 2, 7, 4, 10, 7, 14, 10, 19, 14, 24, 19, 30, 24, 37, 30, 44, 37, 52, 44, 61, 52, 70, 61, 80, 70, 91, 80, 102, 91, 114, 102, 127, 114, 140, 127, 154, 140, 169, 154, 184, 169, 200, 184, 217, 200, 234, 217, 252, 234, 271, 252, 290, 271, 310, 290, 331, 310, 352, 331, 374, 352, 397
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008795.

Programs

  • GAP
    a:=[1,0,2,1,4,2,7];; for n in [8..70] do a[n]:=2*a[n-2]+a[n-3]-a[n-4]-2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Sep 11 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^4)/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 11 2019
    
  • Maple
    seq(coeff(series((1+x^4)/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 11 2019
  • Mathematica
    LinearRecurrence[{0,2,1,-1,-2,0,1},{1,0,2,1,4,2,7},70] (* Harvey P. Dale, Apr 27 2014 *)
    CoefficientList[Series[(1+x^4)/((1-x^2)^2*(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 28 2014 *)
  • PARI
    a(n)=(9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 24*!(n%3) + 21)/72 \\ Charles R Greathouse IV, Feb 10 2017
    
  • Sage
    def A008796_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+x^4)/((1-x^2)^2*(1-x^3))).list()
    A008796_list(70) # G. C. Greubel, Sep 11 2019
    

Formula

G.f.: (1+x^4)/((1-x^2)^2*(1-x^3)).
a(n) = (1/72) * (9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 29 - 8*A061347[n]). - Ralf Stephan, Apr 28 2014

Extensions

Definition clarified by N. J. A. Sloane, Feb 02 2018
More terms added by G. C. Greubel, Sep 11 2019