A008796 Molien series for 3-dimensional group [2,3]+ = 223; also for group H_{1,2} of order 384.
1, 0, 2, 1, 4, 2, 7, 4, 10, 7, 14, 10, 19, 14, 24, 19, 30, 24, 37, 30, 44, 37, 52, 44, 61, 52, 70, 61, 80, 70, 91, 80, 102, 91, 114, 102, 127, 114, 140, 127, 154, 140, 169, 154, 184, 169, 200, 184, 217, 200, 234, 217, 252, 234, 271, 252, 290, 271, 310, 290, 331, 310, 352, 331, 374, 352, 397
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II Codes, Even Unimodular Lattices and Invariant Rings, IEEE Trans. Information Theory, Volume 45, Number 4, 1999, 1194-1205.
- Index entries for linear recurrences with constant coefficients, signature (0,2,1,-1,-2,0,1).
- Index entries for Molien series
Crossrefs
Cf. A008795.
Programs
-
GAP
a:=[1,0,2,1,4,2,7];; for n in [8..70] do a[n]:=2*a[n-2]+a[n-3]-a[n-4]-2*a[n-5]+a[n-7]; od; a; # G. C. Greubel, Sep 11 2019
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x^4)/((1-x^2)^2*(1-x^3)) )); // G. C. Greubel, Sep 11 2019 -
Maple
seq(coeff(series((1+x^4)/((1-x^2)^2*(1-x^3)), x, n+1), x, n), n = 0..70); # G. C. Greubel, Sep 11 2019
-
Mathematica
LinearRecurrence[{0,2,1,-1,-2,0,1},{1,0,2,1,4,2,7},70] (* Harvey P. Dale, Apr 27 2014 *) CoefficientList[Series[(1+x^4)/((1-x^2)^2*(1-x^3)), {x, 0, 70}], x] (* Vincenzo Librandi, Apr 28 2014 *)
-
PARI
a(n)=(9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 24*!(n%3) + 21)/72 \\ Charles R Greathouse IV, Feb 10 2017
-
Sage
def A008796_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P((1+x^4)/((1-x^2)^2*(1-x^3))).list() A008796_list(70) # G. C. Greubel, Sep 11 2019
Formula
G.f.: (1+x^4)/((1-x^2)^2*(1-x^3)).
a(n) = (1/72) * (9*(-1)^n*(2*n + 3) + 6*n^2 + 18*n + 29 - 8*A061347[n]). - Ralf Stephan, Apr 28 2014
Extensions
Definition clarified by N. J. A. Sloane, Feb 02 2018
More terms added by G. C. Greubel, Sep 11 2019