A008830 Discrete logarithm of n to the base 2 modulo 11.
0, 1, 8, 2, 4, 9, 7, 3, 6, 5
Offset: 1
Examples
From _Jon E. Schoenfield_, Aug 21 2021: (Start) Sequence is a permutation of the 10 integers 0..9: k 2^k 2^k mod 11 -- ------ ---------- 0 1 1 so a(1) = 0 1 2 2 so a(2) = 1 2 4 4 so a(4) = 2 3 8 8 so a(8) = 3 4 16 5 so a(5) = 4 5 32 10 so a(10) = 5 6 64 9 so a(9) = 6 7 128 7 so a(7) = 7 8 256 3 so a(3) = 8 9 512 6 so a(6) = 9 10 1024 1 but a(1) = 0, so the sequence is finite with 10 terms. (End)
References
- I. M. Vinogradov, Elements of Number Theory, p. 220.
Links
- Eric Weisstein's World of Mathematics, Discrete Logarithm.
Crossrefs
Cf. A036117.
Programs
-
Magma
j := 11; F := FiniteField(j); PrimitiveElement(F); [ Log(F!n) : n in [ 1..j-1 ]];
-
Maple
a:= n-> numtheory[mlog](n, 2, 11): seq(a(n), n=1..10); # Alois P. Heinz, Aug 21 2021
-
Python
from sympy.ntheory import discrete_log def a(n): return discrete_log(11, n, 2) print([a(n) for n in range(1, 11)]) # Michael S. Branicky, Aug 13 2021
Formula
2^a(n) == n (mod 11). - Michael S. Branicky, Aug 13 2021
Comments