cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A008834 Largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 27
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [ seq( expand(nthpow(i,3)),i=1..200) ];
    # alternative:
    A008834 := proc(n)
        local p;
        a := 1 ;
        for p in ifactors(n)[2] do
            e := floor(op(2,p)/3) ;
            a := a*op(1,p)^(3*e) ;
        end do:
        a ;
    end proc:
    seq(A008834(n),n=1..40) ; # R. J. Mathar, Dec 08 2015
  • Mathematica
    a[n_] := Times @@ (#[[1]]^(#[[2]] - Mod[#[[2]], 3]) & ) /@ FactorInteger[n]; Table[a[n], {n, 1, 81}]
    (* Jean-François Alcover, Jul 31 2011, after PARI prog. *)
      upto=1000;Flatten[With[{c=Range[Floor[Surd[upto,3]],1,-1]^3}, Table[ Select[ c,Divisible[n,#]&,1],{n,upto}]]](* Harvey P. Dale, Apr 07 2013 *)
  • PARI
    a(n)=n=factor(n);prod(i=1,#n[,1],n[i,1]^(n[i,2]\3*3)) \\ Charles R Greathouse IV, Jul 28 2011
    
  • Python
    from math import prod
    from sympy import factorint
    def A008834(n): return prod(p**(e-e%3) for p, e in factorint(n).items()) # Chai Wah Wu, Aug 08 2024

Formula

Multiplicative with a(p^e) = p^(3[e/3]). - Mitch Harris, Apr 19 2005
a(n) = A053150(n)^3. - R. J. Mathar, May 27 2011
Dirichlet g.f.: zeta(s)*zeta(3s-3)/zeta(3s). The Dirichlet convolution of this sequence with A050985 generates A000203. - R. J. Mathar, Apr 05 2011
Sum_{k=1..n} a(k) ~ 45 * zeta(4/3) * n^(4/3) / (2*Pi^4). - Vaclav Kotesovec, Jan 31 2019
a(n) = n/A050985(n). - Amiram Eldar, Aug 15 2023